32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis.

      1 ,
      Applied and environmental microbiology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Denaturing gradient gel electrophoresis (DGGE) has become a widely used tool to examine microbial diversity and community structure, but no systematic comparison has been made of the DGGE profiles obtained when different hypervariable (V) regions are amplified from the same community DNA samples. We report here a study to make such comparisons and establish a preferred choice of V region(s) to examine by DGGE, when community DNA extracted from samples of digesta is used. When the members of the phylogenetically representative set of 218 rrs genes archived in the RDP II database were compared, the V1 region was found to be the most variable, followed by the V9 and V3 regions. The temperature of the lowest-melting-temperature (T(m(L))) domain for each V region was also calculated for these rrs genes, and the V1 to V4 region was found to be most heterogeneous with respect to T(m(L)). The average T(m(L)) values and their standard deviations for each V region were then used to devise the denaturing gradients suitable for separating 95% of all the sequences, and the PCR-DGGE profiles produced from the same community DNA samples with these conditions were compared. The resulting DGGE profiles were substantially different in terms of the number, resolution, and relative intensity of the amplification products. The DGGE profiles of the V3 region were best, and the V3 to V5 and V6 to V8 regions produced better DGGE profiles than did other multiple V-region amplicons. Introduction of degenerate bases in the primers used to amplify the V1 or V3 region alone did not improve DGGE banding profiles. Our results show that DGGE analysis of gastrointestinal microbiomes is best accomplished by the amplification of either the V3 or V1 region of rrs genes, but if a longer amplification product is desired, then the V3 to V5 or V6 to V8 region should be targeted.

          Related collections

          Author and article information

          Journal
          Appl Environ Microbiol
          Applied and environmental microbiology
          American Society for Microbiology
          0099-2240
          0099-2240
          Aug 2004
          : 70
          : 8
          Affiliations
          [1 ] Department of Animal Sciences, The Ohio State University, 2027 Coffey Rd., Columbus, OH 43210, USA. yu.226@osu.edu
          Article
          70/8/4800
          10.1128/AEM.70.8.4800-4806.2004
          492348
          15294817
          9f00580f-e068-4c27-afc0-7f16a8f99d63
          History

          Comments

          Comment on this article