2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel feeding interactions amplify the impact of species redistribution on an Arctic food web

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          A working guide to boosted regression trees.

          1. Ecologists use statistical models for both explanation and prediction, and need techniques that are flexible enough to express typical features of their data, such as nonlinearities and interactions. 2. This study provides a working guide to boosted regression trees (BRT), an ensemble method for fitting statistical models that differs fundamentally from conventional techniques that aim to fit a single parsimonious model. Boosted regression trees combine the strengths of two algorithms: regression trees (models that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for combining many simple models to give improved predictive performance). The final BRT model can be understood as an additive regression model in which individual terms are simple trees, fitted in a forward, stagewise fashion. 3. Boosted regression trees incorporate important advantages of tree-based methods, handling different types of predictor variables and accommodating missing data. They have no need for prior data transformation or elimination of outliers, can fit complex nonlinear relationships, and automatically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their relatively poor predictive performance. Although BRT models are complex, they can be summarized in ways that give powerful ecological insight, and their predictive performance is superior to most traditional modelling methods. 4. The unique features of BRT raise a number of practical issues in model fitting. We demonstrate the practicalities and advantages of using BRT through a distributional analysis of the short-finned eel (Anguilla australis Richardson), a native freshwater fish of New Zealand. We use a data set of over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being

            Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Network structure and biodiversity loss in food webs: robustness increases with connectance

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Global Change Biology
                Glob Change Biol
                Wiley
                1354-1013
                1365-2486
                September 2020
                June 24 2020
                September 2020
                : 26
                : 9
                : 4894-4906
                Affiliations
                [1 ]Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
                [2 ]Norwegian Institute for Nature Research (NINA) Tromsø Norway
                [3 ]Institute of Marine Research Tromsø Norway
                [4 ]Environmental and Marine Biology Åbo Akademi University Turku Finland
                Article
                10.1111/gcb.15196
                32479687
                9f2c9bd2-feda-48b2-96ff-e5606b5b77ac
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article