2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occurrence, partition and environmental risk assessment of per- and polyfluoroalkyl substances in water and sediment from the Baiyangdian Lake, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work examined the contamination of poly- and perfluorinated compounds (PFASs) in the water and sediment of the Baiyangdian Lake. The total concentration of PFASs in the surface water varied from 140.5 to 1828.5 ng/L, and the highest concentration of PFASs were observed near the entrance of Fuhe river. The topmost contaminant was sodium perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA) in the north and south of the Baiyangdian Lake respectively, which indicated different contamination sources. The total concentration of PFASs in the sediment varied from 0.48 to 30 ng/g, and the distribution of PFASs in the sediment was similar with that in the surface water. The concentrations of polyfluoroalkyl phosphoric diesters (diPAPs) were three to four orders of magnitude lower than those of perfluorocarboxylates (PFCAs) and PFSAs. Although the pore water and the surface water had similar ΣPFASs, the concentration of perfluorodecanoic acid (PFDA) in pore water was 1.4 to 4.4 times higher than that in surface water, and the concentration of perfluoropentanoic acid (PFPeA) in pore water was 20–70% that in surface water. The results of ecological risk assessment showed that the PFASs were currently of no immediate risk to the aquatic life.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008.

          Since 2002, practices in manufacturing polyfluoroalkyl chemicals (PFCs) in the United States have changed. Previous results from the National Health and Nutrition Examination Survey (NHANES) documented a significant decrease in serum concentrations of some PFCs during 1999-2004. To further assess concentration trends of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA), we analyzed 7876 serum samples collected from a representative sample of the general U.S. population ≥12 years of age during NHANES 1999-2008. We detected PFOS, PFOA, PFNA, and PFHxS in more than 95% of participants. Concentrations differed by sex regardless of age and we observed some differences by race/ethnicity. Since 1999-2000, PFOS concentrations showed a significant downward trend, because of discontinuing industrial production of PFOS, but PFNA concentrations showed a significant upward trend. PFOA concentrations during 1999-2000 were significantly higher than during any other time period examined, but PFOA concentrations have remained essentially unchanged during 2003-2008. PFHxS concentrations showed a downward trend from 1999 to 2006, but concentrations increased during 2007-2008. Additional research is needed to identify the environmental sources contributing to human exposure to PFCs. Nonetheless, these NHANES data suggest that sociodemographic factors may influence exposure and also provide unique information on temporal trends of exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sorption of perfluorinated surfactants on sediments.

            The sorption of anionic perfluorochemical (PFC) surfactants of varying chain lengths to sediments was investigated using natural sediments of varying iron oxide and organic carbon content. Three classes of PFC surfactants were evaluated for sorptive potential: perfluorocarboxylates, perfluorosulfonates, and perfluorooctyl sulfonamide acetic acids. PFC surfactant sorption was influenced by both sediment-specific and solution-specific parameters. Sediment organic carbon, rather than sediment iron oxide content, was the dominant sediment-parameter affecting sorption, indicating the importance of hydrophobic interactions. However, sorption also increased with increasing solution [Ca2+] and decreasing pH, suggesting that electrostatic interactions play a role. Perfluorocarbon chain length was the dominant structural feature influencing sorption, with each CF2 moiety contributing 0.50-0.60 log units to the measured distribution coefficients. The sulfonate moiety contributed an additional 0.23 log units to the measured distribution coefficient, when compared to carboxylate analogs. In addition, the perfluorooctyl sulfonamide acetic acids demonstrated substantially stronger sorption than perfluorooctane sulfonate (PFOS). These data should prove useful for modeling the environmental fate of this class of contaminants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors.

              Since 2000 there has been an on-going industrial transition to replace long-chain perfluoroalkyl carboxylic acids(PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their precursors. To date, information on these replacements including their chemical identities, however, has not been published or made easily accessible to the public, hampering risk assessment and management of these chemicals. Here we review information on fluorinated alternatives in the public domain. We identify over 20 fluorinated substances that are applied in [i] fluoropolymer manufacture, [ii] surface treatment of textile, leather and carpets, [iii] surface treatment of food contact materials,[iv] metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products.We summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the limited information available, it is unclear whether fluorinated alternatives are safe for humans and the environment.We identify three major data gaps that must be filled to perform meaningful risk assessments and recommend generation of the missing data through cooperation among all stakeholders (industry, regulators, academic scientists and the public).
                Bookmark

                Author and article information

                Contributors
                zhaoxr@craes.org.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 March 2020
                13 March 2020
                2020
                : 10
                : 4691
                Affiliations
                ISNI 0000 0001 2166 1076, GRID grid.418569.7, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, , State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, ; Beijing, 100012 China
                Article
                61651
                10.1038/s41598-020-61651-6
                7069980
                32170214
                9f4ae42f-6d3b-4943-a426-db0e0c3c390d
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 September 2019
                : 19 February 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 21607145
                Award Recipient :
                Funded by: Special Program for the Basic Work of Science and Technology of Ministry of Science and Technology of People's Republic of China,2015FY110900-6
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                environmental monitoring,environmental impact
                Uncategorized
                environmental monitoring, environmental impact

                Comments

                Comment on this article