2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morbid Obesity and Thyroid Cancer Rate. A Review of Literature

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the past three decades, several recent studies have analyzed the alarming increase of obesity worldwide, and it has been well established that the risk of many types of malignancies is increased in obese individuals; in the same period, thyroid cancer has become the fastest growing cancer of all malignancies. We investigated the current literature to underline the presence of a connection between excess body weight or Body Mass Index (BMI) and risk of thyroid cancer. Previous studies stated that the contraposition between adipocytes and adipose-resident immune cells enhances immune cell production of multiple pro-inflammatory factors with subsequent induction of hyperlipidemia and vascular injury; these factors are all associated with oxidative stress and cancer development and/or progression. Moreover, recent studies made clear the mitogenic and tumorigenic action of insulin, carried out through the stimulation of mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase/AKT (PI3K/AKT) pathways, which is correlated to the hyperinsulinemia and hyperglycemia found in obese population. Our findings suggest that obesity and excess body weight are related to an increased risk of thyroid cancer and that the mechanisms that combine overweight with this cancer should be searched for in the adipokine pathways and chronic inflammation onset.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found

          Global cancer statistics.

          The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants

            Summary Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world’s men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI ≥35 kg/m2). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women. Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world’s poorest regions, especially in south Asia. Funding Wellcome Trust, Grand Challenges Canada.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunity, inflammation, and cancer.

              Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, malignant conversion, invasion, and metastasis. Inflammation also affects immune surveillance and responses to therapy. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. This review outlines the principal mechanisms that govern the effects of inflammation and immunity on tumor development and discusses attractive new targets for cancer therapy and prevention. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                27 April 2021
                May 2021
                : 10
                : 9
                : 1894
                Affiliations
                [1 ]Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; silvia.savastano@ 123456unina.it (S.S.); emanuele.filice888@ 123456gmail.com (E.F.)
                [2 ]Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; nunzio.velotti@ 123456gmail.com (N.V.); rossyserao2@ 123456gmail.com (R.S.); AntonioVitiello_@ 123456hotmail.it (A.V.); giovannaberardi88@ 123456gmail.com (G.B.); vincenzoschiavone92@ 123456gmail.com (V.S.); mario.musella@ 123456unina.it (M.M.)
                Author notes
                [* ]Correspondence: stefaniamasone@ 123456yahoo.it ; Tel./Fax: +39-081-7462-728
                Author information
                https://orcid.org/0000-0002-3478-6270
                Article
                jcm-10-01894
                10.3390/jcm10091894
                8123763
                33925549
                9fb03ce7-2c12-4b1b-87d2-9a48c10c24dc
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 25 March 2021
                : 25 April 2021
                Categories
                Review

                thyroid cancer,obesity,chronic inflammation,adipokines
                thyroid cancer, obesity, chronic inflammation, adipokines

                Comments

                Comment on this article