Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic engineering of roseoflavin-overproducing microorganisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Roseoflavin, a promising broad-spectrum antibiotic, is naturally produced by the bacteria Streptomyces davaonensis and Streptomyces cinnabarinus. The key enzymes responsible for roseoflavin biosynthesis and the corresponding genes were recently identified. In this study we aimed to enhance roseoflavin production in S. davaonensis and to synthesize roseoflavin in the heterologous hosts Bacillus subtilis and Corynebacterium glutamicum by (over)expression of the roseoflavin biosynthesis genes.

          Results

          While expression of the roseoflavin biosynthesis genes from S. davaonensis was not observed in recombinant strains of B. subtilis, overexpression was successful in C. glutamicum and S. davaonensis. Under the culture conditions tested, a maximum of 1.6 ± 0.2 µM (ca. 0.7 mg/l) and 34.9 ± 5.2 µM (ca. 14 mg/l) roseoflavin was produced with recombinant strains of C. glutamicum and S. davaonensis, respectively. In S. davaonensis the roseoflavin yield was increased by 78%.

          Conclusions

          The results of this study provide a sound basis for the development of an economical roseoflavin production process.

          Electronic supplementary material

          The online version of this article (10.1186/s12934-019-1181-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.

          We have constructed cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. All vectors contain the 760-bp oriT fragment from the IncP plasmid, RK2. Transfer functions need to be supplied in trans by the E. coli donor strain. We have incorporated into these vectors selectable antibiotic-resistance markers (AmR, ThR, SpR) that function in Streptomyces spp. and other features that should allow for: (i) integration via homologous recombination between cloned DNA and the Streptomyces spp. chromosome, (ii) autonomous replication, or (iii) site-specific integration at the bacteriophage phi C31 attachment site. Shuttle cosmids for constructing genomic libraries and bacteriophage P1 cloning vector capable of accepting approx. 100-kb fragments are also described. A simple mating procedure has been developed for the conjugal transfer of these vectors from E. coli to Streptomyces spp. that involves plating of the donor strain and either germinated spores or mycelial fragments of the recipient strain. We have shown that several of these vectors can be introduced into Streptomyces fradiae, a strain that is notoriously difficult to transform by PEG-mediated protoplast transformation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective small-molecule inhibition of an RNA structural element.

            Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Riboswitches as antibacterial drug targets.

              New validated cellular targets are needed to reinvigorate antibacterial drug discovery. This need could potentially be filled by riboswitches-messenger RNA (mRNA) structures that regulate gene expression in bacteria. Riboswitches are unique among RNAs that serve as drug targets in that they have evolved to form structured and highly selective receptors for small drug-like metabolites. In most cases, metabolite binding to the receptor represses the expression of the gene(s) encoded by the mRNA. If a new metabolite analog were designed that binds to the receptor, the gene(s) regulated by that riboswitch could be repressed, with a potentially lethal effect to the bacteria. Recent work suggests that certain antibacterial compounds discovered decades ago function at least in part by targeting riboswitches. Herein we will summarize the experiments validating riboswitches as drug targets, describe the existing technology for riboswitch drug discovery and discuss the challenges that may face riboswitch drug discoverers.
                Bookmark

                Author and article information

                Contributors
                m.mack@hs-mannheim.de
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                26 August 2019
                26 August 2019
                2019
                : 18
                : 146
                Affiliations
                ISNI 0000 0001 2353 1865, GRID grid.440963.c, Institute for Technical Microbiology, , Mannheim University of Applied Sciences, ; Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
                Author information
                http://orcid.org/0000-0003-2732-1448
                Article
                1181
                10.1186/s12934-019-1181-2
                6709556
                31451111
                a03bdab7-78d9-422a-a9da-ce0dd02c44bd
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 May 2019
                : 30 July 2019
                Funding
                Funded by: Baden-Württemberg
                Award ID: 1100041601
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Biotechnology
                roseoflavin,riboflavin (vitamin b2),streptomyces davaonensis,bacillus subtilis,corynebacterium glutamicum

                Comments

                Comment on this article