7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent advances in the design of artificial corneas.

      Current Opinion in Ophthalmology
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artificial corneas are being developed to meet a shortage of donor corneas and to address cases in which allografting is contraindicated. A range of artificial corneas has been developed. Here we review several newer designs and especially those inspired by naturally occurring biomaterials found with the human body and elsewhere.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication of novel biomaterials through molecular self-assembly.

          Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silk film biomaterials for cornea tissue engineering.

            Biomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. Silk protein films were used in a biomimetic approach to replicate corneal stromal tissue architecture. The films were 2 microm thick to emulate corneal collagen lamellae dimensions, and were surface patterned to guide cell alignment. To enhance trans-lamellar diffusion of nutrients and to promote cell-cell interaction, pores with 0.5-5.0 microm diameters were introduced into the silk films. Human and rabbit corneal fibroblast proliferation, alignment and corneal extracellular matrix expression on these films in both 2D and 3D cultures were demonstrated. The mechanical properties, optical clarity and surface patterned features of these films, combined with their ability to support corneal cell functions suggest that this new biomaterial system offers important potential benefits for corneal tissue regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human corneal endothelial cell growth on a silk fibroin membrane.

              Tissue engineering of the cornea could overcome shortages of donor corneas for transplantation and improve quality. Our aim was to grow an endothelial layer on a substratum suitable for transplant. Silkworm (Bombyx mori) fibroin was prepared as 5 μm thick transparent membranes. The B4G12 cell line was used to assess attachment and growth of human corneal endothelial cells on fibroin and compare this with a reference substratum of tissue-culture plastic. To see if cell attachment and proliferation could be improved, we assessed coatings of collagen IV, FNC Coating Mix(®) and a chondroitin sulphate-laminin mixture. All the coatings improved the final mean cell count, but consistently higher cell densities were achieved on a tissue-culture plastic rather than fibroin substratum. Collagen-coated substrata were the best of both groups and collagen-coated fibroin was comparable to uncoated tissue-culture plastic. Only fibroin with collagen coating achieved cell confluency. Primary human corneal endothelial cells were then grown using a sphere-forming technique and when seeded onto collagen-coated fibroin they grew to confluency with polygonal morphology. We report the first successful growth of primary human corneal endothelial cells on coated fibroin as a step in evaluating fibroin as a substratum for the transplantation of tissue-constructs for endothelial keratoplasty. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                24663067
                10.1097/ICU.0000000000000049

                Comments

                Comment on this article