3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High‐intensity training in normobaric hypoxia enhances exercise performance and aerobic capacity in Thoroughbred horses: A randomized crossover study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We examined the effects of high‐intensity training in normobaric hypoxia on aerobic capacity and exercise performance in horses and the individual response to normoxic and hypoxic training. Eight untrained horses were studied in a randomized, crossover design after training in hypoxia (HYP; 15.0% inspired O 2) or normoxia (NOR; 20.9% inspired O 2) 3 days/week for 4 weeks separated by a 4‐month washout period. Before and after each training period, incremental treadmill exercise tests were performed in normoxia. Each training session consisted of 1 min cantering at 7 m/s and 2 min galloping at the speed determined to elicit maximal oxygen consumption ( V ˙ O 2max) in normoxia. Hypoxia increased significantly more than NOR in run time to exhaustion (HYP, +28.4%; NOR, +10.4%, p = .001), V ˙ O 2max (HYP, +12.1%; NOR, +2.6%, p = .042), cardiac output ( Q ˙ ; HYP, +11.3%; NOR, −1.7%, p = .019), and stroke volume ( SV) at exhaustion (HYP, +5.4%; NOR, −5.5%, p = .035) after training. No significant correlations were observed between NOR and HYP for individual changes after training in run time ( p = .21), V ˙ O 2max ( p = .99), Q ˙ ( p = .19), and SV ( p = .46) at exhaustion. Arterial O 2 saturation during exercise in HYP was positively correlated with the changes in run time ( r = .85, p = .0073), Q ˙ ( r = .72, p = .043) and SV ( r = .77, p = .026) of HYP after training, whereas there were no correlations between these parameters in NOR. These results suggest that high‐intensity training in normobaric hypoxia improved exercise performance and aerobic capacity of horses to a greater extent than the same training protocol in normoxia, and the severity of hypoxemia during hypoxic exercise might be too stressful for poor responders to hypoxic training.

          Abstract

          The present study demonstrates that high‐intensity training in hypoxia improves exercise performance and aerobic capacity of horses to a greater extent than the same training protocol in normoxia. However, the severity of hypoxemia during hypoxic exercise might be too stressful for poor responders to hypoxic training.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Combining hypoxic methods for peak performance.

          New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia

            Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during ‘aerobic’ or ‘anaerobic’ interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) ‘all-out’ sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts.

              We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
                Bookmark

                Author and article information

                Contributors
                mukai@equinst.go.jp
                Journal
                Physiol Rep
                Physiol Rep
                10.1002/(ISSN)2051-817X
                PHY2
                physreports
                Physiological Reports
                John Wiley and Sons Inc. (Hoboken )
                2051-817X
                22 May 2020
                May 2020
                : 8
                : 10 ( doiID: 10.14814/phy2.v8.10 )
                : e14442
                Affiliations
                [ 1 ] Sports Science Division Equine Research Institute Japan Racing Association Utsunomiya Tochigi Japan
                [ 2 ] Department of Surgical and Radiological Sciences School of Veterinary Medicine University of California Davis CA USA
                [ 3 ]Present address: Sports Science Division Equine Research Institute Japan Racing Association Shimotsuke Tochigi Japan
                [ 4 ]Present address: Equine Science Division Hidaka Training and Research Center Japan Racing Association Urakawa Hokkaido Japan
                [ 5 ]Present address: Equestrian Affairs Japan Racing Association Tokyo Japan
                Author notes
                [*] [* ] Correspondence

                Kazutaka Mukai, 1400‐4 Shiba, Shimotsuke, Tochigi, 329‐0412, Japan.

                Email: mukai@ 123456equinst.go.jp

                Author information
                https://orcid.org/0000-0002-1992-6634
                Article
                PHY214442
                10.14814/phy2.14442
                7243200
                32441408
                a0719a16-394e-4545-9968-c29b96ea1d5b
                © 2020 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 December 2019
                : 09 April 2020
                : 19 April 2020
                Page count
                Figures: 6, Tables: 1, Pages: 10, Words: 6494
                Funding
                Funded by: Japan Racing Association
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                May 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.2 mode:remove_FC converted:22.05.2020

                aerobic capacity,horse,hypoxic training,performance
                aerobic capacity, horse, hypoxic training, performance

                Comments

                Comment on this article