10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STAT5A and STAT5B—Twins with Different Personalities in Hematopoiesis and Leukemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells—which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A’s and STAT5B’s individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          IFNalpha activates dormant haematopoietic stem cells in vivo.

          Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFNalpha), HSCs efficiently exit G(0) and enter an active cell cycle. HSCs respond to IFNalpha treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFNalpha target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFNalpha/beta receptor (IFNAR), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFNalpha stimulation, demonstrating that STAT1 and Sca-1 mediate IFNalpha-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil, HSCs pre-treated (primed) with IFNalpha and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFNalpha are functionally compromised and are rapidly out-competed by non-activatable Ifnar(-/-) cells in competitive repopulation assays. Whereas chronic activation of the IFNalpha pathway in HSCs impairs their function, acute IFNalpha treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFNalpha on leukaemic cells, and raise the possibility for new applications of type I interferons to target cancer stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular details of cytokine signaling via the JAK/STAT pathway

            More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine‐based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain‐containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine‐induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of Jak/STAT signaling in immunity and disease.

              More than two decades ago, experiments on the antiviral mechanisms of IFNs led to the discovery of JAKs and their downstream effectors, the STAT proteins. This pathway has since become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors, including cytokines and hormones, mediate their diverse functions. Jak/STAT research has not only impacted basic science, particularly in the context of intercellular communication and cell-extrinsic control of gene expression, it also has become a prototype for transition from bench to bedside, culminating in the development and clinical implementation of pathway-specific therapeutics. This brief review synthesizes our current understanding of Jak/STAT biology while taking stock of the lessons learned and the challenges that lie ahead.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                04 November 2019
                November 2019
                : 11
                : 11
                : 1726
                Affiliations
                Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria; sebastian.kollmann@ 123456vetmeduni.ac.at (S.K.); judith.pickem@ 123456gmail.com (J.P.); Andrea.hoelbl@ 123456vetmeduni.ac.at (A.H.-K.); veronika.sexl@ 123456vetmeduni.ac.at (V.S.)
                Author notes
                [* ]Correspondence: barbara.maurer@ 123456vetmeduni.ac.at ; Tel.: +43-125-077-2940
                [†]

                Equal first author contribution.

                Article
                cancers-11-01726
                10.3390/cancers11111726
                6895831
                31690038
                a0727a3c-5700-410f-8548-2fc4a56474c1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2019
                : 01 November 2019
                Categories
                Review

                stat5a,stat5b,hematopoietic stem cells,stat5bn642h,stat5 mouse models,bcr–abl,leukemia,hematopoiesis

                Comments

                Comment on this article