9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Carbonic Anhydrase Inhibitors. Synthesis of Water-Soluble, Topically Effective, Intraocular Pressure-Lowering Aromatic/Heterocyclic Sulfonamides Containing Cationic or Anionic Moieties:  Is the Tail More Important than the Ring?1

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reaction of several aromatic/heterocyclic sulfonamides containing a free amino, imino, hydrazino, or hydroxyl group, with 2, 3-pyridinedicarboxylic anhydride or 2,6-pyridinedicarboxylic acid in the presence of carbodiimide derivatives, afforded two series of water-soluble (as hydrochloride, triflate, or carboxylate salts) compounds. The new derivatives were assayed as inhibitors of the zinc enzyme carbonic anhydrase (CA) and more precisely of three of its isozymes, CA I, II (cytosolic forms), and IV (membrane-bound form), involved in important physiological processes. Efficient inhibition was observed against all three isozymes, but especially against CA II and IV (in nanomolar range), the two isozymes known to play a critical role in aqueous humor secretion within the ciliary processes of the eye. Some of the best inhibitors synthesized were applied as 2% water solutions directly into the eye of normotensive and glaucomatous albino rabbits. Very strong and long-lasting intraocular pressure (IOP) lowering was observed with many of them. This result prompted us to reanalyze the synthetic work done by other groups for the design of water-soluble, topically effective antiglaucoma sulfonamides. According to these researchers, the IOP-lowering effect is due to the intrinsic nature of the specific heterocyclic sulfonamide considered, among which the thienothiopyran-2-sulfonamide derivatives represent the best-studied case. Indeed, the first agents developed for topical application, such as dorzolamide, are derivatives of this ring system. To prove that the tail (in this case the pyridinecarboxylic moieties) conferring water solubility to a sulfonamide CA inhibitor is more important than the ring to which the sulfonamido group is grafted, we also prepared dorzolamide derivatives incorporating such moieties. These new compounds possess good water solubility as hydrochloride or carboxylate salts, balanced by a relatively modest lipid solubility. They are strong CA II inhibitors and are able to lower IOP in experimental animals more than the parent derivatives. Our conclusion is that the tail conferring water solubility to such an enzyme inhibitor is more important for topical activity as an antiglaucoma drug, than the heterocyclic/aromatic ring to which the sulfonamido moiety is grafted.

          Related collections

          Author and article information

          Journal
          Journal of Medicinal Chemistry
          J. Med. Chem.
          American Chemical Society (ACS)
          0022-2623
          1520-4804
          July 1999
          July 1999
          : 42
          : 14
          : 2641-2650
          Article
          10.1021/jm9900523
          10411484
          a09f678e-c229-40b3-86e6-bba24f4b8729
          © 1999
          History

          Comments

          Comment on this article