Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunological cytokine profiling identifies TNF-α as a key molecule dysregulated in autistic children

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have suggested that the etiology of autism spectrum disorder (ASD) may be caused by immunological factors, particularly abnormalities in the innate immune system. However, it is still unclear which specific cytokines may be of most importance. The current study therefore investigated which cytokines showed altered concentrations in blood in ASD compared with healthy control children and which were also correlated with symptom severity. Our study sample included 32 children diagnosed with ASD and 28 age and sex-matched typically developing children. Autism symptoms were measured using the Autistic Behavior Checklist (ABC) and blood samples were taken from all subjects. We used Milliplex cytokine kits to determine serum concentrations of 11 Th1, Th2 and Th17 related cytokines. Additionally, expression of THRIL (TNFα and hnRNPL related immunoregulatory LincRNA), a long non-coding RNA involved in the regulation of tumor necrosis factor- α (TNF-α), was determined using real–time PCR. Of the 11 cytokines measured only concentrations of TNF-α (p=0.002), IL-1β (p=0.02) and IL-17a (p=0.049) were significantly increased in ASD children compared to typically developing controls, but only TNF-α concentrations were positively correlated with severity of ASD symptoms on all 5 different ABC sub-scales and were predictive of an ASD phenotype (area under the curve = 0.74). Furthermore, THRIL RNA expression was significantly decreased in ASD children. Our results provide further support for altered innate immunity being an important autism pathogenic factor, with autistic children showing increased blood TNF-α concentrations associated with symptom severity, and decreased expression of the THRIL gene involved in regulating TNF-α.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroglial activation and neuroinflammation in the brain of patients with autism.

          Autism is a neurodevelopmental disorder characterized by impaired communication and social interaction and may be accompanied by mental retardation and epilepsy. Its cause remains unknown, despite evidence that genetic, environmental, and immunological factors may play a role in its pathogenesis. To investigate whether immune-mediated mechanisms are involved in the pathogenesis of autism, we used immunocytochemistry, cytokine protein arrays, and enzyme-linked immunosorbent assays to study brain tissues and cerebrospinal fluid (CSF) from autistic patients and determined the magnitude of neuroglial and inflammatory reactions and their cytokine expression profiles. Brain tissues from cerebellum, midfrontal, and cingulate gyrus obtained at autopsy from 11 patients with autism were used for morphological studies. Fresh-frozen tissues available from seven patients and CSF from six living autistic patients were used for cytokine protein profiling. We demonstrate an active neuroinflammatory process in the cerebral cortex, white matter, and notably in cerebellum of autistic patients. Immunocytochemical studies showed marked activation of microglia and astroglia, and cytokine profiling indicated that macrophage chemoattractant protein (MCP)-1 and tumor growth factor-beta1, derived from neuroglia, were the most prevalent cytokines in brain tissues. CSF showed a unique proinflammatory profile of cytokines, including a marked increase in MCP-1. Our findings indicate that innate neuroimmune reactions play a pathogenic role in an undefined proportion of autistic patients, suggesting that future therapies might involve modifying neuroglial responses in the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP).

            Recent reports have suggested that the prevalence of autism and related spectrum disorders (ASDs) is substantially higher than previously recognised. We sought to quantify prevalence of ASDs in children in South Thames, UK. Within a total population cohort of 56 946 children aged 9-10 years, we screened all those with a current clinical diagnosis of ASD (n=255) or those judged to be at risk for being an undetected case (n=1515). A stratified subsample (n=255) received a comprehensive diagnostic assessment, including standardised clinical observation, and parent interview assessments of autistic symptoms, language, and intelligence quotient (IQ). Clinical consensus diagnoses of childhood autism and other ASDs were derived. We used a sample weighting procedure to estimate prevalence. The prevalence of childhood autism was 38.9 per 10,000 (95% CI 29.9-47.8) and that of other ASDs was 77.2 per 10,000 (52.1-102.3), making the total prevalence of all ASDs 116.1 per 10,000 (90.4-141.8). A narrower definition of childhood autism, which combined clinical consensus with instrument criteria for past and current presentation, provided a prevalence of 24.8 per 10,000 (17.6-32.0). The rate of previous local identification was lowest for children of less educated parents. Prevalence of autism and related ASDs is substantially greater than previously recognised. Whether the increase is due to better ascertainment, broadening diagnostic criteria, or increased incidence is unclear. Services in health, education, and social care will need to recognise the needs of children with some form of ASD, who constitute 1% of the child population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autism.

              Autism is a set of heterogeneous neurodevelopmental conditions, characterised by early-onset difficulties in social communication and unusually restricted, repetitive behaviour and interests. The worldwide population prevalence is about 1%. Autism affects more male than female individuals, and comorbidity is common (>70% have concurrent conditions). Individuals with autism have atypical cognitive profiles, such as impaired social cognition and social perception, executive dysfunction, and atypical perceptual and information processing. These profiles are underpinned by atypical neural development at the systems level. Genetics has a key role in the aetiology of autism, in conjunction with developmentally early environmental factors. Large-effect rare mutations and small-effect common variants contribute to risk. Assessment needs to be multidisciplinary and developmental, and early detection is essential for early intervention. Early comprehensive and targeted behavioural interventions can improve social communication and reduce anxiety and aggression. Drugs can reduce comorbid symptoms, but do not directly improve social communication. Creation of a supportive environment that accepts and respects that the individual is different is crucial. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                10 October 2017
                18 July 2017
                : 8
                : 47
                : 82390-82398
                Affiliations
                1 The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiao Tong University Medical School, Chengdu, China
                2 Department of Clinical Medicine, Southwest Medical University, Luzhou, China
                3 National Office for Maternal and Child Health Surveillance of China, Department of Obstetrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
                4 Department of Obstetrics and Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
                5 Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
                6 Joint Laboratory of Reproductive Medicine, SCU-CUHK, West China Second University Hospital, Sichuan University, Chengdu, China
                Author notes
                Correspondence to: Wenming Xu, Xuwenming1973@ 123456163.com
                Keith M. Kendrick, kkendrick@ 123456uestc.edu.cn
                Article
                19326
                10.18632/oncotarget.19326
                5669898
                Copyright: © 2017 Xie et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Categories
                Research Paper

                Oncology & Radiotherapy

                tnf-α, cytokines, autism, thril mrna, lincrna

                Comments

                Comment on this article