3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona

      , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urban areas are characterized by a large proportion of artificial surfaces, such as concrete and asphalt, which absorb and store more heat than natural vegetation, leading to the Urban Heat Island (UHI) effect. Cool pavements, walls, and roofs have been suggested as a solution to mitigate UHI, but their effectiveness depends on local land-use patterns and surrounding urban forms. Meteorological data was collected using a mobile platform in the Power Ranch community of Gilbert, Arizona in the Phoenix Metropolitan Area, a region that experiences harsh summer temperatures. The warmest hour recorded during data collection was 13 August 2015 at 5:00 p.m., with a far-field air temperature of about 42 ∘ C and a low wind speed of 0.45 m/s from East-Southeast (ESE). An uncoupled pavement-urban canyon Computational Fluid Dynamics (CFD) model was developed and validated to study the microclimate of the area. Five scenarios were studied to investigate the effects of different pavements on UHI, replacing all pavements with surfaces of progressively higher albedo: New asphalt concrete, typical concrete, reflective concrete, making only roofs and walls reflective, and finally replacing all artificial surfaces with a reflective coating. While new asphalt surfaces increased the surrounding 2 m air temperatures by up to 0.5 ∘ C, replacing aged asphalt with typical concrete with higher albedo did not significantly decrease it. Reflective concrete pavements decreased air temperature by 0.2–0.4 ∘ C and reflective roofs and walls by 0.4–0.7 ∘ C, while replacing all roofs, walls, and pavements with a reflective coating led to a more significant decrease, of up to 0.8–1.0 ∘ C. Residences downstream of major collector roads experienced a decreased air temperature at the higher end of these ranges. However, large areas of natural surfaces for this community had a significant effect on downstream air temperatures, which limits the UHI mitigation potential of these strategies.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: not found
          • Article: not found

          The energetic basis of the urban heat island

          T. Oke (1982)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A tensorial approach to computational continuum mechanics using object-oriented techniques

                Bookmark

                Author and article information

                Contributors
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                August 2019
                August 17 2019
                : 11
                : 16
                : 4452
                Article
                10.3390/su11164452
                a1993fb9-809d-4474-910a-c00361b95f2d
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article