9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Changes in RFamide-related peptide-1 (RFRP-1)-immunoreactivity during postnatal development and the estrous cycle.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GnRH is a key player in the hypothalamic control of gonadotropin secretion from the anterior pituitary gland. It has been shown that the mammalian counterpart of the avian gonadotropin inhibitory hormone named RFamide-related peptide (RFRP) is expressed in hypothalamic neurons that innervate and inhibit GnRH neurons. The RFRP precursor is processed into 2 mature peptides, RFRP-1 and RFRP-3. These are characterized by a conserved C-terminal motif RF-NH2 but display highly different N termini. Even though the 2 peptides are equally potent in vitro, little is known about their relative distribution and their distinct roles in vivo. In this study, we raised an antiserum selective for RFRP-1 and defined the distribution of RFRP-1-immunoreactive (ir) neurons in the rat brain. Next, we analyzed the level of RFRP-1-ir during postnatal development in males and females and investigated changes in RFRP-1-ir during the estrous cycle. RFRP-1-ir neurons were distributed along the third ventricle from the caudal part of the medial anterior hypothalamus throughout the medial tuberal hypothalamus and were localized in, but mostly in between, the dorsomedial hypothalamic, ventromedial hypothalamic, and arcuate nuclei. The number of RFRP-1-ir neurons and the density of cellular immunoreactivity were unchanged from juvenile to adulthood in male rats during the postnatal development. However, both parameters were significantly increased in female rats from peripuberty to adulthood, demonstrating prominent gender difference in the developmental control of RFRP-1 expression. The percentage of c-Fos-positive RFRP-1-ir neurons was significantly higher in diestrus as compared with proestrus and estrus. In conclusion, we found that adult females, as compared with males, have significantly more RFRP-1-ir per cell, and these cells are regulated during the estrous cycle.

          Related collections

          Author and article information

          Journal
          Endocrinology
          Endocrinology
          The Endocrine Society
          1945-7170
          0013-7227
          Nov 2014
          : 155
          : 11
          Affiliations
          [1 ] Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, DK-2100 Copenhagen, Denmark.
          Article
          10.1210/en.2014-1274
          25144921
          a1c42391-304c-44fb-a5fb-1a79380d58d1
          History

          Comments

          Comment on this article