14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aging of Attentiveness in Border Collies and Other Pet Dog Breeds: The Protective Benefits of Lifelong Training

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging of attentiveness affects cognitive functions like perception and working memory, which can seriously impact communication between dogs and humans, potentially hindering training and cooperation. Previous studies have revealed that aged laboratory beagles and pet Border collies (BC) show a decline in selective attention. However, much less is known about the aging of attentiveness in pet dogs in general rather than in specific breeds. Using 185 pet dogs (75 BC and 110 dogs of other breeds) divided into three age groups [late adulthood (6- < 8 year), senior (8- < 10 year) and geriatric (≥10 year)], we assessed the progress of aging of attentional capture, sustained and selective attention in older dogs in order to explore if prior results in BC are generalizable and to evaluate the influence of lifelong training on measures of attention. Each dog’s lifelong training score (ranging from 0 to 52) was calculated from a questionnaire filled in by the owners listing what kinds of training the dog participated in during its entire life. Dogs were tested in two tasks; the first, measuring attentional capture and sustained attention toward two stimuli (toy and human); and the second, measuring selective attention by means of clicker training for eye contact and finding food on the floor. In the first task, results revealed a significant effect of age but no effect of lifelong training on latency to orient to the stimuli. Duration of looking decreased with age and increased with lifelong training. In the second task, while lifelong training decreased the latency of dogs to form eye contact, aged dogs needed longer to find food. BC did not differ from other dogs in any measures of attention except latency to find food. In conclusion, aged dogs showed a decline in attentional capture and sustained attention demonstrating that these tests are sensitive to detect aging of attentiveness in older pet dogs. Importantly, selective attention remained unchanged with age and lifelong training seemed to delay or reduce the aging of attentiveness, further highlighting the importance of lifelong training in retaining general cognitive functions.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of acute exercise on cognitive performance: a meta-analysis.

          There is a substantial body of literature related to the effects of a single session of exercise on cognitive performance. The premise underlying this research is that physiological changes in response to exercise have implications for cognitive function. This literature has been reviewed both narratively and meta-analytically and, although the research findings are mixed, researchers have generally concluded that there is a small positive effect. The purpose of this meta-analysis was to provide an updated comprehensive analysis of the extant literature on acute exercise and cognitive performance and to explore the effects of moderators that have implications for mechanisms of the effects. Searches of electronic databases and examinations of reference lists from relevant studies resulted in 79 studies meeting inclusion criteria. Consistent with past findings, analyses indicated that the overall effect was positive and small (g=0.097 n=1034). Positive and small effects were also found in all three acute exercise paradigms: during exercise (g=0.101; 95% confidence interval [CI]; 0.041-0.160), immediately following exercise (g=0.108; 95% CI; 0.069-0.147), and after a delay (g=0.103; 95% CI; 0.035-0.170). Examination of potential moderators indicated that exercise duration, exercise intensity, type of cognitive performance assessed, and participant fitness were significant moderators. In conclusion, the effects of acute exercise on cognitive performance are generally small; however, larger effects are possible for particular cognitive outcomes and when specific exercise parameters are used. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerobic fitness reduces brain tissue loss in aging humans.

            The human brain gradually loses tissue from the third decade of life onward, with concomitant declines in cognitive performance. Given the projected rapid growth in aged populations, and the staggering costs associated with geriatric care, identifying mechanisms that may reduce or reverse cerebral deterioration is rapidly emerging as an important public health goal. Previous research has demonstrated that aerobic fitness training improves cognitive function in older adults and can improve brain health in aging laboratory animals, suggesting that aerobic fitness may provide a mechanism to improve cerebral health in aging humans. We examined the relationship between aerobic fitness and in vivo brain tissue density in an older adult population, using voxel-based morphometric techniques. We acquired high-resolution magnetic resonance imaging scans from 55 older adults. These images were segmented into gray and white matter maps, registered into stereotaxic space, and examined for systematic variation in tissue density as a function of age, aerobic fitness, and a number of other health markers. Consistent with previous studies of aging and brain volume, we found robust declines in tissue densities as a function of age in the frontal, parietal, and temporal cortices. More importantly, we found that losses in these areas were substantially reduced as a function of cardiovascular fitness, even when we statistically controlled for other moderator variables. These findings extend the scope of beneficial effects of aerobic exercise beyond cardiovascular health, and they suggest a strong solid biological basis for the benefits of exercise on the brain health of older adults.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise, cognition, and the aging brain.

              We provide a brief review of the literature on exercise effects on brain and cognition. To this end, we focus on both prospective and retrospective human epidemiological studies that have examined the influence of exercise and physical activity on cognition and dementia. We then examine the relatively small set of human randomized clinical trials that have, for the most part, focused on exercise training effects on cognition. Next, we discuss animal research that has examined the molecular, cellular, and behavioral effects of exercise training. Finally, we conclude with a summary and brief discussion of important future directions of research on fitness cognition and brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                20 April 2017
                2017
                : 9
                : 100
                Affiliations
                [1] 1Clever Dog Lab, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna Vienna, Austria
                [2] 2Department of Ethology, Eötvös Loránd University Budapest, Hungary
                [3] 3Royal Canin Research Centre Aimargues, France
                Author notes

                Edited by: Rommy Von Bernhardi, Pontifical Catholic University of Chile, Chile

                Reviewed by: Sven Reese, Ludwig-Maximilians-Universität München, Germany; Nicole R. Dorey, University of Florida, USA

                Article
                10.3389/fnagi.2017.00100
                5397477
                28473766
                a1c6c22b-98ba-40f6-89b9-a0aebc8d8f39
                Copyright © 2017 Chapagain, Virányi, Wallis, Huber, Serra and Range.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 January 2017
                : 29 March 2017
                Page count
                Figures: 9, Tables: 4, Equations: 0, References: 55, Pages: 14, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                aging,training,pet dogs,attentional capture,sustained attention,selective attention
                Neurosciences
                aging, training, pet dogs, attentional capture, sustained attention, selective attention

                Comments

                Comment on this article