73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deficient Regulatory T Cell Activity and Low Frequency of IL-17-Producing T Cells Correlate with the Extent of Cardiomyopathy in Human Chagas' Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Myocardium damage during Chagas' disease results from the immunological imbalance between pro- and production of anti-inflammatory cytokines and has been explained based on the Th1–Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis. Here, we investigated the role of IL-17 and regulatory T cell during human Chagas' disease.

          Methodology/Principal Findings

          First, we observed CD4 +IL-17 + T cells in culture of peripheral blood mononuclear cells (PBMC) from Chagas' disease patients and we evaluated Th1, Th2, Th17 cytokine profile production in the PBMC cells from Chagas' disease patients (cardiomyopathy-free, and with mild, moderate or severe cardiomyopathy) cultured with T. cruzi antigen. Cultures of PBMC from patients with moderate and severe cardiomyopathy produced high levels of TNF-α, IFN-γ and low levels of IL-10, when compared to mild cardiomyopathy or cardiomyopathy-free patients. Flow cytometry analysis showed higher CD4 +IL-17 + cells in PBMC cultured from patients without or with mild cardiomyopathy, in comparison to patients with moderate or severe cardiomyopathy. We then analyzed the presence and function of regulatory T cells in all patients. All groups of Chagas' disease patients presented the same frequency of CD4 +CD25 + regulatory T cells. However, CD4 +CD25 + T cells from patients with mild cardiomyopathy or cardiomyopathy-free showed higher suppressive activity than those with moderate and severe cardiomyopathy. IFN-γ levels during chronic Chagas' disease are inversely correlated to the LVEF (P = 0.007, r = −0.614), while regulatory T cell activity is directly correlated with LVEF (P = 0.022, r = 0.500).

          Conclusion/Significance

          These results indicate that reduced production of the cytokines IL-10 and IL-17 in association with high levels of IFN-γ and TNF-α is correlated with the severity of the Chagas' disease cardiomyopathy, and the immunological imbalance observed may be causally related with deficient suppressor activity of regulatory T cells that controls myocardial inflammation.

          Author Summary

          Dilated cardiomyopathy is one of the clinical forms of Chagas' disease (CD) after the infection caused by the parasite Trypanosoma cruzi. Even though strategies adopted in most Latin-American countries in the last decades towards vector control have been effective in reducing the incidence of CD, active transmission is maintained in some regions, and secondary prevention approaches are still required for the infected patients, mostly because the specific anti-parasitic medications are toxic and perhaps of limited efficacy in chronically infected individuals. Moreover, there are no markers to predict the risk of developing dilated cardiomyopathy in asymptomatic, chronically infected patients, although the failure in the mechanisms that control the immune response can be involved in the development of Chagas' heart disease. In this study we show that preserved activity of regulatory T cells and the production of the cytokine IL-17 are connected with a more benign evolution of the disease, which brings a new understanding on the mechanisms associated with progression of CD.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The inhibitory cytokine IL-35 contributes to regulatory T-cell function.

            Regulatory T (T(reg)) cells are a critical sub-population of CD4+ T cells that are essential for maintaining self tolerance and preventing autoimmunity, for limiting chronic inflammatory diseases, such as asthma and inflammatory bowel disease, and for regulating homeostatic lymphocyte expansion. However, they also suppress natural immune responses to parasites and viruses as well as anti-tumour immunity induced by therapeutic vaccines. Although the manipulation of T(reg) function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. Here we demonstrate that Epstein-Barr-virus-induced gene 3 (Ebi3, which encodes IL-27beta) and interleukin-12 alpha (Il12a, which encodes IL-12alpha/p35) are highly expressed by mouse Foxp3+ (forkhead box P3) T(reg) cells but not by resting or activated effector CD4+ T (T(eff)) cells, and that an Ebi3-IL-12alpha heterodimer is constitutively secreted by T(reg) but not T(eff) cells. Both Ebi3 and Il12a messenger RNA are markedly upregulated in T(reg) cells co-cultured with T(eff) cells, thereby boosting Ebi3 and IL-12alpha production in trans. T(reg)-cell restriction of this cytokine occurs because Ebi3 is a downstream target of Foxp3, a transcription factor that is required for T(reg)-cell development and function. Ebi3-/- and Il12a-/- T(reg) cells have significantly reduced regulatory activity in vitro and fail to control homeostatic proliferation and to cure inflammatory bowel disease in vivo. Because these phenotypic characteristics are distinct from those of other IL-12 family members, this novel Ebi3-IL-12alpha heterodimeric cytokine has been designated interleukin-35 (IL-35). Ectopic expression of IL-35 confers regulatory activity on naive T cells, whereas recombinant IL-35 suppresses T-cell proliferation. Taken together, these data identify IL-35 as a novel inhibitory cytokine that may be specifically produced by T(reg) cells and is required for maximal suppressive activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compromised Function of Regulatory T Cells in Rheumatoid Arthritis and Reversal by Anti-TNFα Therapy

              Regulatory T cells have been clearly implicated in the control of disease in murine models of autoimmunity. The paucity of data regarding the role of these lymphocytes in human autoimmune disease has prompted us to examine their function in patients with rheumatoid arthritis (RA). Regulatory (CD4+CD25+) T cells isolated from patients with active RA displayed an anergic phenotype upon stimulation with anti-CD3 and anti-CD28 antibodies, and suppressed the proliferation of effector T cells in vitro. However, they were unable to suppress proinflammatory cytokine secretion from activated T cells and monocytes, or to convey a suppressive phenotype to effector CD4+CD25− T cells. Treatment with antitumor necrosis factor α (TNFα; Infliximab) restored the capacity of regulatory T cells to inhibit cytokine production and to convey a suppressive phenotype to “conventional” T cells. Furthermore, anti-TNFα treatment led to a significant rise in the number of peripheral blood regulatory T cells in RA patients responding to this treatment, which correlated with a reduction in C reactive protein. These data are the first to demonstrate that regulatory T cells are functionally compromised in RA, and indicate that modulation of regulatory T cells by anti-TNFα therapy may be a further mechanism by which this disease is ameliorated.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                April 2012
                24 April 2012
                : 6
                : 4
                : e1630
                Affiliations
                [1 ]Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Brazil
                [2 ]Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
                [3 ]School of Medicine, University Antonio Narino, Bogota, Colombia
                [4 ]Integrated Faculty Fafibe and Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
                [5 ]Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
                [6 ]Department of Physical and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
                [7 ]Division of Cardiology, Anis Rassi Hospital, Goiânia, Brazil
                [8 ]Division of Cardiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
                University of Massachusetts Medical School, United States of America
                Author notes

                Conceived and designed the experiments: PMMG FRSG JSS. Performed the experiments: PMMG FRSG GKS. Analyzed the data: PMMG FRSG GKS RDJ GJR LMB AR ARJ AS BCM JAMN JSS. Contributed reagents/materials/analysis tools: PMMG FRSG GKS RDJ GJR LMB AR ARJ AS BCM JAMN JSS. Wrote the paper: PMMG FRSG AR ARJ AS BCM JAMN JSS.

                Article
                PNTD-D-11-01006
                10.1371/journal.pntd.0001630
                3335880
                22545173
                a1f9ca95-a25d-4cbe-bc24-0e08cd301395
                Guedes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 October 2011
                : 9 March 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Medicine
                Cardiovascular
                Cardiomyopathies
                Clinical Immunology
                Immune Cells
                T Cells
                Immune System
                Cytokines
                Immunity
                Immunity to Infections
                Immunoregulation
                Immune Response
                Infectious Diseases
                Neglected Tropical Diseases
                Chagas Disease
                Parasitic Diseases
                Chagas Disease

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article