54
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      α1-Antitrypsin deficiency

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          α1-Antitrypsin deficiency (A1ATD) is an inherited disorder caused by mutations in SERPINA1, leading to liver and lung disease. It is not a rare disorder but frequently goes underdiagnosed or misdiagnosed as asthma, chronic obstructive pulmonary disease (COPD) or cryptogenic liver disease. The most frequent disease-associated mutations include the S allele and the Z allele of SERPINA1, which lead to the accumulation of misfolded α1-antitrypsin in hepatocytes, endoplasmic reticulum stress, low circulating levels of α1-antitrypsin and liver disease. Currently, there is no cure for severe liver disease and the only management option is liver transplantation when liver failure is life-threatening. A1ATD-associated lung disease predominately occurs in adults and is caused principally by inadequate protease inhibition. Treatment of A1ATD-associated lung disease includes standard therapies that are also used for the treatment of COPD, in addition to the use of augmentation therapy (that is, infusions of human plasma-derived, purified α1-antitrypsin). New therapies that target the misfolded α1-antitrypsin or attempt to correct the underlying genetic mutation are currently under development.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: not found

          Signal integration in the endoplasmic reticulum unfolded protein response.

          The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response.

            PERK and IRE1 are type-I transmembrane protein kinases that reside in the endoplasmic reticulum (ER) and transmit stress signals in response to perturbation of protein folding. Here we show that the lumenal domains of these two proteins are functionally interchangeable in mediating an ER stress response and that, in unstressed cells, both lumenal domains form a stable complex with the ER chaperone BiP. Perturbation of protein folding promotes reversible dissociation of BiP from the lumenal domains of PERK and IRE1. Loss of BiP correlates with the formation of high-molecular-mass complexes of activated PERK or IRE1, and overexpression of BiP attenuates their activation. These findings are consistent with a model in which BiP represses signalling through PERK and IRE1 and protein misfolding relieves this repression by effecting the release of BiP from the PERK and IRE1 lumenal domains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adapting proteostasis for disease intervention.

              The protein components of eukaryotic cells face acute and chronic challenges to their integrity. Eukaryotic protein homeostasis, or proteostasis, enables healthy cell and organismal development and aging and protects against disease. Here, we describe the proteostasis network, a set of interacting activities that maintain the health of proteome and the organism. Deficiencies in proteostasis lead to many metabolic, oncological, neurodegenerative, and cardiovascular disorders. Small-molecule or biological proteostasis regulators that manipulate the concentration, conformation, quaternary structure, and/or the location of protein(s) have the potential to ameliorate some of the most challenging diseases of our era.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Disease Primers
                Nat Rev Dis Primers
                Springer Science and Business Media LLC
                2056-676X
                December 22 2016
                July 28 2016
                : 2
                : 1
                Article
                10.1038/nrdp.2016.51
                27465791
                a219c43b-2570-4794-be18-274c36182d29
                © 2016

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article