3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts

      , , , ,
      Horticulturae
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potential synergistic action of aqueous extracts of pomegranate peel (PP), avocado peel (AP), and avocado seed (AS) wastes isolated by microwave-assisted extraction were assessed in in vitro and in vivo assays as biocontrol agents against several plant pathogenic fungi. The study findings contribute to the utilization of a value-added industrial byproduct and provide significant value in advancing the development of new plant protecting compositions that benefit from the synergistic effects between two important plant species that contain several natural bioactive compounds. More specifically, the in vitro results proved that the use of 100%-pure (PP) extracted waste affected the mycelium growth of Penicillium expansum. Furthermore, mycelium growth of Aspergillus niger was decreased by 10.21% compared to control after 7 days of growth in medium agar containing 100% AP and extracted waste. Moreover, mycelium growth of Botrytis cinerea was affected by equal volume of avocado extraction wastes (50% peel and 50% seed) only at the first 3 days of the inoculation, while at the seventh day of the inoculation there was no effect on the mycelium growth. Equal volumes of the examined wastes showed decreased mycelium growth of Fusarium oxysporum f.sp. lycopersici by 6%, while Rhizoctonia solani mycelium growth was found to be the most sensitive in PP application. In addition, the in vivo assay shown that PP extract suppresses damage of tomato plants caused by R. solani followed by extracted wastes from AP. Based on the research findings, it can be argued that PP and AP extracts can be used as natural antifungals instead of dangerous synthetic antifungals to effectively treat phytopathogens that cause fruit and vegetable losses during cultivation.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Food security: the challenge of feeding 9 billion people.

          Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global food demand and the sustainable intensification of agriculture.

            Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solutions for a cultivated planet.

              Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Horticulturae
                Horticulturae
                MDPI AG
                2311-7524
                April 2022
                March 28 2022
                : 8
                : 4
                : 283
                Article
                10.3390/horticulturae8040283
                a260cc08-eb33-42b1-8a59-7aa6934467df
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article