Blog
About

23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonnegative tensor factorization with frequency modulation cues for blind audio source separation

      Preprint

      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present Vibrato Nonnegative Tensor Factorization, an algorithm for single-channel unsupervised audio source separation with an application to separating instrumental or vocal sources with nonstationary pitch from music recordings. Our approach extends Nonnegative Matrix Factorization for audio modeling by including local estimates of frequency modulation as cues in the separation. This permits the modeling and unsupervised separation of vibrato or glissando musical sources, which is not possible with the basic matrix factorization formulation. The algorithm factorizes a sparse nonnegative tensor comprising the audio spectrogram and local frequency-slope-to-frequency ratios, which are estimated at each time-frequency bin using the Distributed Derivative Method. The use of local frequency modulations as separation cues is motivated by the principle of common fate partial grouping from Auditory Scene Analysis, which hypothesizes that each latent source in a mixture is characterized perceptually by coherent frequency and amplitude modulations shared by its component partials. We derive multiplicative factor updates by Minorization-Maximization, which guarantees convergence to a local optimum by iteration. We then compare our method to the baseline on two separation tasks: one considers synthetic vibrato notes, while the other considers vibrato string instrument recordings.

          Related collections

          Author and article information

          Journal
          2016-05-31
          Article
          1606.00037

          http://creativecommons.org/licenses/by-sa/4.0/

          Custom metadata
          Accepted at the 17th International Society for Music Information Retrieval (ISMIR) Conference, New York, NY, August 2016
          cs.SD

          Graphics & Multimedia design

          Comments

          Comment on this article