13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An Underwater Color Image Quality Evaluation Metric

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Guided image filtering.

          In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Single image dehazing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Underwater image enhancement by wavelength compensation and dehazing.

              Light scattering and color change are two major sources of distortion for underwater photography. Light scattering is caused by light incident on objects reflected and deflected multiple times by particles present in the water before reaching the camera. This in turn lowers the visibility and contrast of the image captured. Color change corresponds to the varying degrees of attenuation encountered by light traveling in the water with different wavelengths, rendering ambient underwater environments dominated by a bluish tone. No existing underwater processing techniques can handle light scattering and color change distortions suffered by underwater images, and the possible presence of artificial lighting simultaneously. This paper proposes a novel systematic approach to enhance underwater images by a dehazing algorithm, to compensate the attenuation discrepancy along the propagation path, and to take the influence of the possible presence of an artifical light source into consideration. Once the depth map, i.e., distances between the objects and the camera, is estimated, the foreground and background within a scene are segmented. The light intensities of foreground and background are compared to determine whether an artificial light source is employed during the image capturing process. After compensating the effect of artifical light, the haze phenomenon and discrepancy in wavelength attenuation along the underwater propagation path to camera are corrected. Next, the water depth in the image scene is estimated according to the residual energy ratios of different color channels existing in the background light. Based on the amount of attenuation corresponding to each light wavelength, color change compensation is conducted to restore color balance. The performance of the proposed algorithm for wavelength compensation and image dehazing (WCID) is evaluated both objectively and subjectively by utilizing ground-truth color patches and video downloaded from the Youtube website. Both results demonstrate that images with significantly enhanced visibility and superior color fidelity are obtained by the WCID proposed.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Image Processing
                IEEE Trans. on Image Process.
                Institute of Electrical and Electronics Engineers (IEEE)
                1057-7149
                1941-0042
                December 2015
                December 2015
                : 24
                : 12
                : 6062-6071
                Article
                10.1109/TIP.2015.2491020
                26513783
                a2ed013d-f922-4ab4-885a-161c955d870c
                © 2015
                History

                Comments

                Comment on this article