5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage.

      Osteoarthritis and Cartilage
      Animals, Cartilage, Articular, physiology, Cattle, Chondrocytes, Collagen, biosynthesis, Extracellular Matrix, chemistry, Proteoglycans, Stress, Mechanical, Tissue Engineering, methods

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanical stimulation is a widely used method to enhance the formation and properties of tissue-engineered cartilage. While studies have evaluated the responsiveness of chondrocytes to mechanical stimuli, little is known about how much stimulation is actually required. Thus, the purpose of this study was to investigate the effect of a single application of cyclic loading to chondrocytes on the formation and properties of in vitro-formed tissue. Isolated bovine articular chondrocytes were seeded on ceramic substrates in 3D culture and subjected to a single application of compressive cyclic loading at 1, 8 or 15 days after seeding. Once the time at which the chondrocytes were most sensitive to mechanical loading was determined, the effect of a single application on the synthesis and accumulation of matrix molecules as well as the mechanical properties of the in vitro-formed cartilage tissue was evaluated. Chondrocytes were more responsive to cyclic loading applied early in culture. Cyclic forces applied 24 h after the cultures were established increased collagen and proteoglycan syntheses (48 +/- 11% and 49 +/- 11%, respectively). This single application of cyclic loading also increased the accumulation of collagen (stimulated: 207 +/- 20 microg, control: 173 +/- 9 microg) and proteoglycans (stimulated: 302 +/- 24 microg, control: 270 +/- 14 microg) as well as improved the mechanical properties of the in vitro-formed tissue (twofold increase in equilibrium stress and modulus) determined 4 weeks after the applied stimulus. A single application of cyclic loading to chondrocytes early in culture increased matrix accumulation and enhanced the mechanical properties of the in vitro-formed tissue. This suggests that mechanical forces do not have to be applied intermittently over long periods of time to accelerate in vitro tissue formation.

          Related collections

          Author and article information

          Comments

          Comment on this article