2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Learning Region-Based Attention Network for Traffic Sign Recognition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traffic sign recognition in poor environments has always been a challenge in self-driving. Although a few works have achieved good results in the field of traffic sign recognition, there is currently a lack of traffic sign benchmarks containing many complex factors and a robust network. In this paper, we propose an ice environment traffic sign recognition benchmark (ITSRB) and detection benchmark (ITSDB), marked in the COCO2017 format. The benchmarks include 5806 images with 43,290 traffic sign instances with different climate, light, time, and occlusion conditions. Second, we tested the robustness of the Libra-RCNN and HRNetv2p on the ITSDB compared with Faster-RCNN. The Libra-RCNN performed well and proved that our ITSDB dataset did increase the challenge in this task. Third, we propose an attention network based on high-resolution traffic sign classification (PFANet), and conduct ablation research on the design parallel fusion attention module. Experiments show that our representation reached 93.57% accuracy in ITSRB, and performed as well as the newest and most effective networks in the German traffic sign recognition dataset (GTSRB).

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

          State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition.

            Traffic signs are characterized by a wide variability in their visual appearance in real-world environments. For example, changes of illumination, varying weather conditions and partial occlusions impact the perception of road signs. In practice, a large number of different sign classes needs to be recognized with very high accuracy. Traffic signs have been designed to be easily readable for humans, who perform very well at this task. For computer systems, however, classifying traffic signs still seems to pose a challenging pattern recognition problem. Both image processing and machine learning algorithms are continuously refined to improve on this task. But little systematic comparison of such systems exist. What is the status quo? Do today's algorithms reach human performance? For assessing the performance of state-of-the-art machine learning algorithms, we present a publicly available traffic sign dataset with more than 50,000 images of German road signs in 43 classes. The data was considered in the second stage of the German Traffic Sign Recognition Benchmark held at IJCNN 2011. The results of this competition are reported and the best-performing algorithms are briefly described. Convolutional neural networks (CNNs) showed particularly high classification accuracies in the competition. We measured the performance of human subjects on the same data-and the CNNs outperformed the human test persons.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Attention is all you need

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                20 January 2021
                February 2021
                : 21
                : 3
                : 686
                Affiliations
                [1 ]Collaborative Innovation Center of Steel Technology, University of Science and Technology, Beijing 100083, China; zhouke@ 123456ustb.edu.cn
                [2 ]School of Advanced Engineering, University of Science and Technology, Beijing 100083, China; 41718057@ 123456xs.ustb.edu.cn
                [3 ]School of Automation and Electrical Engineering, University of Science and Technology, Beijing 100083, China
                Author notes
                [* ]Correspondence: fdm_ustb@ 123456ustb.edu.cn
                Article
                sensors-21-00686
                10.3390/s21030686
                7864033
                33498332
                a320e72a-5127-4613-909f-5ed341652a52
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 December 2020
                : 18 January 2021
                Categories
                Article

                Biomedical engineering
                traffic sign classification,attention,region-based,ice environment,ice traffic sign,recognition benchmark,ice traffic sign detection benchmark

                Comments

                Comment on this article