1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Research progress in decellularized extracellular matrix hydrogels for intervertebral disc degeneration

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review describes the classification of hydrogels, the methods of production of decellularised extracellular matrix (dECM) and the methods of gel formation. Finally, the role of dECM hydrogels in the treatment of intervertebral disc degeneration is summarized.

          Abstract

          As one of the most common clinical disorders, low back pain (LBP) influences patient quality of life and causes substantial social and economic burdens. Many factors can result in LBP, the most common of which is intervertebral disc degeneration (IDD). The progression of IDD cannot be alleviated by conservative or surgical treatments, and gene therapy, growth factor therapy, and cell therapy have their own limitations. Recently, research on the use of hydrogel biomaterials for the treatment of IDD has garnered great interest, and satisfactory treatment results have been achieved. This article describes the classification of hydrogels, the methods of decellularized extracellular matrix (dECM) production and the various types of gel formation. The current research on dECM hydrogels for the treatment of IDD is described in detail in this article. First, an overview of the material sources, decellularization methods, and gel formation methods is given. The focus is on research performed over the last three years, which mainly consists of bovine and porcine NP tissues, while for decellularization methods, combinations of several approaches are primarily used. dECM hydrogels have significantly improved mechanical properties after the polymers are cross-linked. The main effects of these gels include induction of stem cell differentiation to intervertebral disc (IVD) cells, good mechanical properties to restore IVD height after polymer cross-linking, and slow release of exosomes. Finally, the challenges and problems still faced by dECM hydrogels for the treatment of IDD are summarised, and potential solutions are proposed. This paper is the first to summarise the research on dECM hydrogels for the treatment of IDD and aims to provide a theoretical reference for subsequent studies.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          What low back pain is and why we need to pay attention

          Low back pain is a very common symptom. It occurs in high-income, middle-income, and low-income countries and all age groups from children to the elderly population. Globally, years lived with disability caused by low back pain increased by 54% between 1990 and 2015, mainly because of population increase and ageing, with the biggest increase seen in low-income and middle-income countries. Low back pain is now the leading cause of disability worldwide. For nearly all people with low back pain, it is not possible to identify a specific nociceptive cause. Only a small proportion of people have a well understood pathological cause-eg, a vertebral fracture, malignancy, or infection. People with physically demanding jobs, physical and mental comorbidities, smokers, and obese individuals are at greatest risk of reporting low back pain. Disabling low back pain is over-represented among people with low socioeconomic status. Most people with new episodes of low back pain recover quickly; however, recurrence is common and in a small proportion of people, low back pain becomes persistent and disabling. Initial high pain intensity, psychological distress, and accompanying pain at multiple body sites increases the risk of persistent disabling low back pain. Increasing evidence shows that central pain-modulating mechanisms and pain cognitions have important roles in the development of persistent disabling low back pain. Cost, health-care use, and disability from low back pain vary substantially between countries and are influenced by local culture and social systems, as well as by beliefs about cause and effect. Disability and costs attributed to low back pain are projected to increase in coming decades, in particular in low-income and middle-income countries, where health and other systems are often fragile and not equipped to cope with this growing burden. Intensified research efforts and global initiatives are clearly needed to address the burden of low back pain as a public health problem.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-specific low back pain.

            Non-specific low back pain affects people of all ages and is a leading contributor to disease burden worldwide. Management guidelines endorse triage to identify the rare cases of low back pain that are caused by medically serious pathology, and so require diagnostic work-up or specialist referral, or both. Because non-specific low back pain does not have a known pathoanatomical cause, treatment focuses on reducing pain and its consequences. Management consists of education and reassurance, analgesic medicines, non-pharmacological therapies, and timely review. The clinical course of low back pain is often favourable, thus many patients require little if any formal medical care. Two treatment strategies are currently used, a stepped approach beginning with more simple care that is progressed if the patient does not respond, and the use of simple risk prediction methods to individualise the amount and type of care provided. The overuse of imaging, opioids, and surgery remains a widespread problem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Designing cell-compatible hydrogels for biomedical applications.

              Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. They can be engineered to resemble the extracellular environment of the body's tissues in ways that enable their use in medical implants, biosensors, and drug-delivery devices. Cell-compatible hydrogels are designed by using a strategy of coordinated control over physical properties and bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues known to modulate cell behavior. Important new discoveries in stem cell research, cancer biology, and cellular morphogenesis have been realized with model hydrogel systems premised on these designs. Basic and clinical applications for hydrogels in cell therapy, tissue engineering, and biomedical research continue to drive design improvements using performance-based materials engineering paradigms.
                Bookmark

                Author and article information

                Contributors
                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                March 14 2023
                2023
                : 11
                : 6
                : 1981-1993
                Affiliations
                [1 ]Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
                [2 ]Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China
                [3 ]Liuyang Hospital of Traditional Chinese Medicine, Beizhengzhong Road, Hunan, 410399, China
                Article
                10.1039/D2BM01862D
                36734099
                a3342944-4e5d-485e-b630-0980cbd75175
                © 2023

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article