9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Genetics of Phlebotomus papatasi from Endemic and Nonendemic Areas for Zoonotic Cutaneous Leishmaniasis in Morocco, as Revealed by Cytochrome Oxidase Gene Subunit I Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major Yakimoff & Shokhor and transmitted by Phlebotomus papatasi (Scopoli) is a public health concern in Morocco. The disease is endemic mainly in pre-Saharan regions on the southern slope of the High Atlas Mountains. The northern slope of the High Atlas Mountains and the arid plains of central Morocco remain non-endemic and are currently considered high risk for ZCL. Here we investigate and compare the population genetic structure of P. papatasi populations sampled in various habitats in historical foci and non-endemic ZCL areas. A fragment of the mtDNA cytochrome oxidase I (COI) gene was amplified and sequenced in 59 individuals from 10 P. papatasi populations. Haplotype diversity was probed, a median-joining network was generated ( F ST) and molecular variance (AMOVA) were analyzed. Overall, we identified 28 haplotypes with 32 distinct segregating sites, of which seven are parsimony informative. The rate of private haplotypes was high; 20 haplotypes (71.4%) are private ones and exclusive to a single population. The phylogenetic tree and the network reconstructed highlight a genetic structuration of these populations in two well defined groups: Ouarzazate (or endemic areas) and Non-Ouarzazate (or nonendemic areas). These groups are separated by the High Atlas Mountains. Overall, our study highlights differences in terms of population genetics between ZCL endemic and non-endemic areas. To what extent such differences would impact the transmission of L. major by natural P. papatasi population remains to be investigated.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple sequence alignment with hierarchical clustering.

            F Corpet (1988)
            An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, a hierarchical clustering of the sequences is performed using the matrix of the pairwise alignment scores. The closest sequences are aligned creating groups of aligned sequences. Then close groups are aligned until all sequences are aligned in one group. The pairwise alignments included in the multiple alignment form a new matrix that is used to produce a hierarchical clustering. If it is different from the first one, iteration of the process can be performed. The method is illustrated by an example: a global alignment of 39 sequences of cytochrome c.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies

              Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                06 July 2020
                July 2020
                : 8
                : 7
                : 1010
                Affiliations
                [1 ]Laboratory of Biotechnology and Valorisation of Plant Genetic Resources, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Béni Mellal B. P 523, Morocco
                [2 ]IRD, Université de Montpellier, MIVEGEC, 34000 Montpellier, France; deborah.garcia@ 123456ird.fr (D.G.); didier.fontenille@ 123456ird.fr (D.F.)
                [3 ]Sidi Mohamed Ben Abdellah University, Fes 30000, Morocco
                [4 ]Department of Biological Sciences, Al-Quds University, Jerusalem P.O. BOX 51000, Palestine; ohamarsheh@ 123456gmail.com
                [5 ]IRD, Université de Montpellier, InterTryp, 34 000 Montpellier, France
                Author notes
                [* ]Correspondence: guernaouisouad@ 123456gmail.com (S.G.); denis.sereno@ 123456ird.fr (D.S.); Tel.: +33-467-516-328 (D.S.)
                Author information
                https://orcid.org/0000-0002-3258-9759
                https://orcid.org/0000-0002-0034-9291
                Article
                microorganisms-08-01010
                10.3390/microorganisms8071010
                7409291
                32640689
                a3527825-a07e-43b3-8b43-c6816390ef26
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 May 2020
                : 02 July 2020
                Categories
                Article

                phlebotomus papatasi,leishmania major,zoonotic cutaneous leishmaniasis,genetic structure,cytochrome oxidase subunit i,morocco

                Comments

                Comment on this article