20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types.

          Results

          The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values.

          Conclusion

          The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          New insights into atopic dermatitis.

          Atopic dermatitis is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers and is often the first step in the atopic march that results in asthma and allergic rhinitis. The clinical phenotype that characterizes atopic dermatitis is the product of interactions between susceptibility genes, the environment, defective skin barrier function, and immunologic responses. This review summarizes recent progress in our understanding of the pathophysiology of atopic dermatitis and the implications for new management strategies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Re-coalescence of emulsion droplets during high-energy emulsification

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hen's egg chorioallantoic membrane test for irritation potential.

              The increasingly large number of chemicals introduced onto the market and into the environment has necessitated the monitoring of environmental materials and specimen banking, as well as the development of rapid and reliable methods for the evaluation of toxicity. The Hen's Egg Test, or Hühner-Embryonen-Test (HET) is a rapid, sensitive and inexpensive toxicity test and can give information on embryotoxicity, teratogenicity, systemic and immunopathological effects, metabolic pathways and now, in developed form, on mucous-membrane irritation potencies of chemical substances. Testing with incubated hen's eggs is a borderline case between in vivo and in vitro systems and does not conflict with ethical and legal obligations especially animal protection laws. In the special field of mucous-membrane irritation testing, a specific score and classification scheme was developed for the HET, which allows risk assessments analogous to the Draize scheme. There is a good correlation between the results for HET tests on a variety of pyrithiones, phenols and isothiazolinones, and the corresponding data based on Draize tests. HET chorioallantoic membrane testing should and could not entirely replace current irritation tests in mammals, but it can diminish the number of investigations with mammals, as well as limit or eliminate pain and injury during animal experiments and allow regulators to set priority and toxicity categories.
                Bookmark

                Author and article information

                Journal
                J Nanobiotechnology
                Journal of Nanobiotechnology
                BioMed Central
                1477-3155
                2011
                28 September 2011
                : 9
                : 44
                Affiliations
                [1 ]Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
                [2 ]Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
                Article
                1477-3155-9-44
                10.1186/1477-3155-9-44
                3198904
                21952107
                a375d062-53da-454f-8416-8ec79d112677
                Copyright ©2011 Bernardi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 April 2011
                : 28 September 2011
                Categories
                Research

                Biotechnology
                Biotechnology

                Comments

                Comment on this article