35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Patterns and Power of Phenotypic Selection in Nature

      ,
      BioScience
      American Institute of Biological Sciences

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The strength of phenotypic selection in natural populations.

          How strong is phenotypic selection on quantitative traits in the wild? We reviewed the literature from 1984 through 1997 for studies that estimated the strength of linear and quadratic selection in terms of standardized selection gradients or differentials on natural variation in quantitative traits for field populations. We tabulated 63 published studies of 62 species that reported over 2,500 estimates of linear or quadratic selection. More than 80% of the estimates were for morphological traits; there is very little data for behavioral or physiological traits. Most published selection studies were unreplicated and had sample sizes below 135 individuals, resulting in low statistical power to detect selection of the magnitude typically reported for natural populations. The absolute values of linear selection gradients |beta| were exponentially distributed with an overall median of 0.16, suggesting that strong directional selection was uncommon. The values of |beta| for selection on morphological and on life-history/phenological traits were significantly different: on average, selection on morphology was stronger than selection on phenology/life history. Similarly, the values of |beta| for selection via aspects of survival, fecundity, and mating success were significantly different: on average, selection on mating success was stronger than on survival. Comparisons of estimated linear selection gradients and differentials suggest that indirect components of phenotypic selection were usually modest relative to direct components. The absolute values of quadratic selection gradients |gamma| were exponentially distributed with an overall median of only 0.10, suggesting that quadratic selection is typically quite weak. The distribution of gamma values was symmetric about 0, providing no evidence that stabilizing selection is stronger or more common than disruptive selection in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alternative reproductive strategies and tactics: diversity within sexes.

            Mart Gross (1996)
            Not all members of a sex behave in the same way. Frequency- and statusdependent selection have given rise to many alternative reproductive phenotypes within the sexes. The evolution and proximate control of these alternatives are only beginning to be understood. Although game theory has provided a theoretical framework, the concept of the mixed strategy has not been realized in nature, and alternative strategies are very rare. Recent findings suggest that almost all alternative reproductive phenotypes within the sexes are due to alternative tactics within a conditional strategy, and, as such, while the average fitnesses of the alternative phenotypes are unequal, the strategy is favoured in evolution. Proximate mechanisms that underlie alternative phenotypes may have many similarities with those operating between the sexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of the Rate of Evolution in Natural Populations of Guppies (Poecilia reticulata)

              Reznick, Shaw, Rodd (1997)
              Natural populations of guppies were subjected to an episode of directional selection that mimicked natural processes. The resulting rate of evolution of age and size at maturity was similar to rates typically obtained for traits subjected to artificial selection in laboratory settings and up to seven orders of magnitude greater than rates inferred from the paleontological record. Male traits evolved more rapidly than female traits largely because males had more genetic variation upon which natural selection could act. These results are considered in light of the ongoing debate about the importance of natural selection versus other processes in the paleontological record of evolution.
                Bookmark

                Author and article information

                Journal
                BioScience
                American Institute of Biological Sciences
                1525-3244
                0006-3568
                July 01 2007
                July 01 2007
                : 57
                : 7
                : 561-572
                Article
                10.1641/B570706
                a377d897-5c4f-42f1-9142-1ad039a3204f
                © 2007
                History

                Comments

                Comment on this article