21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although flakes of two-dimensional (2D) heterostructures at micrometer scale can be formed with adhesive-tape methods, isolation of 2D flakes into monolayers is extremely time-consuming as it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits the high-throughput production of multiple monolayers of wafer-scale (5 centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer. Wafer-scale uniformity of h-BN, WS2, WSe2, MoS2, and MoSe2 monolayers was verified by photoluminescence (PL) response and by substantial retention of electronic conductivity. We fabricated wafer-scale van der Waals heterostructures, including field-effect transistors, with single-atom thickness resolution.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Van der Waals heterostructures

            Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strong light-matter interactions in heterostructures of atomically thin films.

              The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                October 11 2018
                : eaat8126
                Article
                10.1126/science.aat8126
                30309906
                a3aae8d0-6974-4f1f-9223-db26c03e19fa
                © 2018
                History

                Comments

                Comment on this article