0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An updated overview of some factors that influence the biological effects of nanoparticles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles (NPs) can be extremely effective in the early diagnosis and treatment of cancer due to their properties. The nanotechnology industry is developing rapidly. The number of multifunctional NPs has increased in the market and hundreds of NPs are in various stages of preclinical and clinical development. Thus, the mechanism underlying the effects of NPs on biological systems has received much attention. After NPs enter the body, they interact with plasma proteins, tumour cell receptors, and small biological molecules. This interaction is closely related to the size, shape, chemical composition and surface modification properties of NPs. In this review, the effects of the size, shape, chemical composition and surface modification of NPs on the biological effects of NPs were summarised, including the mechanism through which NPs enter cells, the resulting oxidative stress response, and the interaction with proteins. This review of the biological effects of NPs can not only provide theoretical support for the preparation of safer and more efficient NPs but also lay the foundation for their clinical application.

          Graphical Abstract

          Effects on cells of NPs with different properties.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species (ROS) as pleiotropic physiological signalling agents

          'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective ORgan Targeting (SORT) nanoparticles for tissue specific mRNA delivery and CRISPR/Cas gene editing

            CRISPR/Cas gene editing and messenger RNA (mRNA)-based protein replacement therapy hold tremendous potential to effectively treat disease-causing mutations with diverse cellular origin. However, it is currently impossible to rationally design nanoparticles that selectively target specific tissues. Here, we report a strategy termed Selective ORgan Targeting (SORT) wherein multiple classes of lipid nanoparticles (LNPs) are systematically engineered to exclusively edit extrahepatic tissues via addition of a supplemental SORT molecule. Lung-, spleen-, and liver-targeted SORT LNPs were designed to selectively edit therapeutically relevant cell types including epithelial cells, endothelial cells, B cells, T cells, and hepatocytes. SORT is compatible with multiple gene editing techniques, including mRNA, Cas9 mRNA / sgRNA, and Cas9 ribonucleoprotein (RNP) complexes, and is envisioned to aid development of protein replacement and gene correction therapeutics in targeted tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

              Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                30 August 2023
                2023
                30 August 2023
                : 11
                : 1254861
                Affiliations
                [1] 1 Key Laboratory of Biological Resources and Utilization of Ministry of Education , Dalian Minzu University , Dalian, Liaoning, China
                [2] 2 Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology , Dalian, Liaoning, China
                Author notes

                Edited by: Hongyu Zhou, Guangzhou University, China

                Reviewed by: Jiulong Li, Chinese Academy of Sciences (CAS), China

                Claudia Contini, Imperial College London, United Kingdom

                *Correspondence: Yang Xuan, xuanyang_1990@ 123456126.com ; Shubiao Zhang, zsb@ 123456dlnu.edu.cn
                [ † ]

                These authors have contributed equally to this work

                Article
                1254861
                10.3389/fbioe.2023.1254861
                10499358
                37711450
                a3b063f6-e854-4a2c-a817-d2abbb78258c
                Copyright © 2023 Xuan, Zhang, Zhu and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 July 2023
                : 18 August 2023
                Funding
                This work was financially supported by the National Natural Science Foundation of China (82001894/21776044), Applied Basic Research Program of Liaoning Province (2023JH2/101600018), Central Government for Scientific and Technological Development Guided Foundation of Dalian, Dalian Minzu University Service National Strategy Project (2020fwgj012), Innovation Research Project of Dalian Minzu University for Master Students.
                Categories
                Bioengineering and Biotechnology
                Review
                Custom metadata
                Nanobiotechnology

                nanoparticles,biological effects,oxidative stress,interaction,protein corona

                Comments

                Comment on this article