12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optically-controlled long-term storage and release of thermal energy in phase-change materials

      research-article
      , ,
      Nature Communications
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid–solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g −1) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.

          Abstract

          Phase-change materials offer excellent thermal storage due to their high latent heat; however, they suffer from spontaneous heat loss. Han et al., use organic photo-switching dopants to introduce an activation energy barrier which enables controllable thermal energy release and retention.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Printed artificial cilia from liquid-crystal network actuators modularly driven by light.

              Polymeric microactuators are potentially useful in micromechanical systems and lab-on-a-chip systems. However, manufacturing of miniature polymeric actuators has been complicated owing to the necessity of including electrodes for actuation or using lithographic techniques for patterning. Here, we demonstrate that all-polymer microdevices can be fabricated using inkjet printing technology in combination with self-organizing liquid-crystal network actuators. We exploit the self-assembling properties of the liquid crystal to create large strain gradients, and light-driven actuation is chosen to allow simple and remote addressing. By using multiple inks, microactuators with different subunits are created that can be selectively addressed by changing the wavelength of the light. The actuators mimic the motion of natural cilia. These artificial cilia have the potential to create flow and mixing in wet environments such as lab-on-a-chip applications. The process is easily adapted for roll-to-roll fabrication, allowing for large-scale and low-cost production of miniaturized active polymer systems.
                Bookmark

                Author and article information

                Contributors
                jcg@mit.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                13 November 2017
                13 November 2017
                2017
                : 8
                : 1446
                Affiliations
                ISNI 0000 0001 2341 2786, GRID grid.116068.8, Department of Materials Science and Engineering, , Massachusetts Institute of Technology, ; 77 Massachusetts Avenue, Cambridge, MA 02139 USA
                Author information
                http://orcid.org/0000-0002-3439-3864
                Article
                1608
                10.1038/s41467-017-01608-y
                5684416
                29133908
                a3d6f2ae-9f73-46eb-bc57-556569bc611d
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 June 2017
                : 2 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article