11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The N-Glycans Determine the Differential Blood Clearance and Hepatic Uptake of Human Immunoglobulin (Ig)a1 and Iga2 Isotypes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human immunoglobulin (Ig)A exists in blood as two isotypes, IgA1 and IgA2, with IgA2 present as three allotypes: IgA2m(1), IgA2m(2), and IgA2m(n). We now demonstrate that recombinant, chimeric IgA1 and IgA2 differ in their pharmacokinetic properties. The major pathway for the clearance of all IgA2 allotypes is the liver. Liver-mediated uptake is through the asialoglycoprotein receptor (ASGR), since clearance can be blocked by injection of excess galactose-Ficoll ligand and suppressed in ASGR-deficient mice. In contrast, only a small percentage of IgA1 is cleared through this pathway. The clearance of IgA1 lacking the hinge region with its associated O-linked carbohydrate was more rapid than that of wild-type IgA1. IgA1 and IgA2 that are not rapidly eliminated by the ASGR are both removed through an undefined ASGR-independent pathway with half-lives of 14 and 10 h, respectively. The rapid clearance of IgA2 but not IgA1 through the liver may in part explain why the serum levels of IgA1 are greater than those of IgA2. In addition, dysfunction of the ASGR or altered N-linked glycosylation, but not O-glycans, that affects recognition by this receptor may account for the elevated serum IgA seen in liver disease and IgA nephropathy.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies.

          Circulating immune complexes (CICs) isolated from sera of patients with IgA nephropathy (IgAN) consist of undergalactosylated, mostly polymeric, and J chain-containing IgA1 and IgG antibodies specific for N-acetylgalactosamine (GalNAc) residues in O-linked glycans of the hinge region of IgA1 heavy chains. Antibodies with such specificity occur in sera of IgAN patients, and in smaller quantities in patients with non-IgA proliferative glomerulonephritis and in healthy controls; they are present mainly in the IgG (predominantly IgG2 subclass), and less frequently in the IgA1 isotype. Their specificity for GalNAc was determined by reactivity with IgA1 myeloma proteins with enzymatically removed N-acetylneuraminic acid (NeuNAc) and galactose (Gal); removal of the O-linked glycans of IgA1 resulted in significantly decreased reactivity. Furthermore, IgA2 proteins that lack the hinge region with O-linked glycans but are otherwise structurally similar to IgA1 did not react with IgG or IgA1 antibodies. The re-formation of isolated and acid-dissociated CICs was inhibited more effectively by IgA1 lacking NeuNAc and Gal than by intact IgA1. Immobilized GalNAc and asialo-ovine submaxillary mucin (rich in O-linked glycans) were also effective inhibitors. Our results suggest that the deficiency of Gal in the hinge region of IgA1 molecules results in the generation of antigenic determinants containing GalNAc residues that are recognized by naturally occurring IgG and IgA1 antibodies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The structure and function of human IgA.

            Shona Kerr (1990)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions.

              The human serum immunoglobulins IgG and IgA1 are produced in bone marrow and both interact with specific cellular receptors that mediate biological events. In contrast to IgA1, the glycosylation of IgG has been well characterized, and its interaction with various Fc receptors (Fc Rs) has been well studied. In this paper, we have analyzed the glycosylation of IgA1 and IgA1 Fab and Fc as well as three recombinant IgA1 molecules, including two N-glycosylation mutants. Amino acid sequencing data of the IgA1 Fc O-glycosylated hinge region indicated that O-glycans are located at Thr228, Ser230, and Ser232, while O-glycan sites at Thr225 and Thr236 are partially occupied. Over 90% of the N-glycans in IgA1 were sialylated, in contrast to IgG, where < 10% contain sialic acid. This paper contains the first report of Fab glycosylation in IgA1, and (in contrast to IgG Fab, which contains only N-linked glycans) both N- and O-linked oligosaccharides were identified. Analysis of the N-glycans attached to recombinant IgA1 indicated that the Cα 2 N-glycosylation site contained mostly biantennary glycans, while the tailpiece site, absent in IgG, contained mostly triantennary structures. Further analysis of these data suggested that processing at one Fc N-glycosylation site affects the other. Neutrophil Fcα R binding studies, using recombinant IgA1, indicated that neither the tailpiece region nor the N-glycans in the C alpha 2 domain contribute to IgA1-neutrophil Fcα R binding. This contrasts with IgG, where removal of the Fc N-glycans reduces binding to the Fcγ R. The primary sequence and disulfide bond pattern of IgA1, together with the crystal structures of IgG1 Fc and mouse IgA Fab and the glycan sequencing data, were used to generate a molecular model of IgA1. As a consequence of both the primary sequence and S-S bond pattern, the N-glycans in IgA1 Fc are not confined within the inter-α-chain space. The accessibility of the Cα 2 N-glycans provides an explanation for the increased sialylation and galactosylation of IgA1 Fc over that of IgG Fc N-glycans, which are confined in the space between the two Cγ 2 domains. This also suggests why in contrast to IgG Fc, the IgA1 N-glycans are not undergalactosylated in rheumatoid arthritis.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                19 June 2000
                : 191
                : 12
                : 2171-2182
                Affiliations
                [a ]Department of Pathology, Rhode Island Hospital, Brown University, Providence, Rhode Island 02903
                [b ]Department of Microbiology, Immunology and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles, California 90095
                Article
                000276
                10.1084/jem.191.12.2171
                2193211
                10859341
                a4869480-dac4-49f9-9f20-c229b68e98c0
                © 2000 The Rockefeller University Press
                History
                : 17 February 2000
                : 19 April 2000
                : 27 April 2000
                Categories
                Original Article

                Medicine
                iga,blood clearance,glycosylation,liver,asialoglycoprotein
                Medicine
                iga, blood clearance, glycosylation, liver, asialoglycoprotein

                Comments

                Comment on this article