37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR

      research-article
      1 , 1 ,
      BMC Plant Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Reference genes are commonly used as the endogenous normalisation measure for the relative quantification of target genes. The appropriate application of quantitative real-time PCR (RT-qPCR), however, requires the use of reference genes whose level of expression is not affected by the test, by general physiological conditions or by inter-individual variability. For this purpose, seven reference genes were investigated in tissues of the most important cereals (wheat, barley and oats). Titre of Barley yellow dwarf virus (BYDV) was determined in oats using relative quantification with different reference genes and absolute quantification, and the results were compared.

          Results

          The expression of seven potential reference genes was evaluated in tissues of 180 healthy, physiologically stressed and virus-infected cereal plants. These genes were tested by RT-qPCR and ranked according to the stability of their expression using three different methods (two-way ANOVA, GeNorm and NormFinder tools). In most cases, the expression of all genes did not depend on abiotic stress conditions or virus infections. All the genes showed significant differences in expression among plant species. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-tubulin (TUBB) and 18S ribosomal RNA (18S rRNA) always ranked as the three most stable genes. On the other hand, elongation factor-1 alpha (EF1A), eukaryotic initiation factor 4a (EIF4A), and 28S ribosomal RNA (28S rRNA) for barley and oat samples; and alpha-tubulin (TUBA) for wheat samples were consistently ranked as the less reliable controls.

          The BYDV titre was determined in two oat varieties by RT-qPCR using three different quantification approaches. There were no significant differences between the absolute and relative quantifications, or between quantification using GAPDH + TUBB + TUBA +18S rRNA and EF1A + EIF4A + 28S rRNA. However, there were discrepancies between the results of individual assays.

          Conclusions

          The geometric average of GAPDH, 18S rRNA and TUBB is suitable for normalisation of BYDV quantification in barley tissues. For wheat and oat samples, a combination of four genes is necessary: GAPDH, 18S rRNA, TUBB and EIF4A for wheat; and GAPDH, 18S rRNA, TUBB and TUBA for oat is recommended.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.

          Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. Real-time RT-PCR is at present the most sensitive method for the detection of low abundance mRNA. To avoid bias, real-time RT-PCR is referred to one or several internal control genes, which should not fluctuate during treatments. Here, the non-regulation of seven housekeeping genes (beta-tubulin, cyclophilin, actin, elongation factor 1-alpha (ef1alpha), 18S rRNA, adenine phosphoribosyl transferase (aprt), and cytoplasmic ribosomal protein L2) during biotic (late blight) and abiotic stresses (cold and salt stress) was tested on potato plants using geNorm software. Results from the three experimental conditions indicated that ef1alpha was the most stable among the seven tested. The expression of the other housekeeping genes tested varied upon stress. In parallel, a study of the variability of expression of hsp20.2, shown to be implicated in late blight stress, was realized. The relative quantification of the hsp20.2 gene varied according to the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Validating internal controls for quantitative plant gene expression studies

            Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR.

              W Xu, W Shi (2006)
              BACKGROUND AND AIMS Mineral nutrient deficiencies and salinity constitute major limitations for crop plant growth on agricultural soils. 14-3-3 proteins are phosphoserine-binding proteins that regulate the activities of a wide array of targets via direct protein-protein interactions and may play an important role in responses to mineral nutrients deficiencies and salt stress. In the present study, the expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots was investigated in order to analyse the 14-3-3 roles of the proteins in these abiotic stresses. Sequence identities and phylogenetic tree creation were performed using DNAMAN version 4.0 (Lynnon Biosoft Company). Real-time RT-PCR was used to examine the expression of each 14-3-3 gene in response to salt stress and potassium and iron deficiencies in young tomato roots. The phylogenetic tree shows that the 14-3-3 gene family falls into two major groups in tomato plants. By using real-time RT-PCR, it was found that (a) under normal growth conditions, there were significant differences in the mRNA levels of 14-3-3 gene family members in young tomato roots and (b) 14-3-3 proteins exhibited diverse patterns of gene expression in response to salt stress and potassium and iron deficiencies in tomato roots. The results suggest that (a) 14-3-3 proteins may be involved in the salt stress and potassium and iron deficiency signalling pathways in young tomato roots, (b) the expression pattern of 14-3-3 gene family members in tomato roots is not strictly related to the position of the corresponding proteins within a phylogenetic tree, (c) gene-specific expression patterns indicate that isoform-specificity may exist in the 14-3-3 gene family of tomato roots, and (d) 14-3-3 proteins (TFT7) might mediate cross-talk between the salt stress and potassium and iron-deficiency signalling pathways in tomato roots.
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2010
                15 July 2010
                : 10
                : 146
                Affiliations
                [1 ]Department of Virology, Crop Research Institute, Drnovská 507, Prague - Ruzyně, the Czech Republic
                Article
                1471-2229-10-146
                10.1186/1471-2229-10-146
                3095291
                20630112
                a4d17433-1607-45fc-8f59-2e0c149faaa7
                Copyright ©2010 Jarošová and Kundu; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 September 2009
                : 15 July 2010
                Categories
                Research Article

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article