18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The SbMT-2 Gene from a Halophyte Confers Abiotic Stress Tolerance and Modulates ROS Scavenging in Transgenic Tobacco

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn ++, Cu ++ and Cd ++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn ++, Cu ++ and Cd ++) stress conditions compared to WT plants. Proline, H 2O 2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H 2O 2 detoxification. Furthermore in vivo localization of H 2O 2 and O 2 ; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu ++ and Cd ++ in root while Zn ++ in stem under stress condition. Under control (unstressed) condition, Zn ++ was accumulated more in root but accumulation of Zn ++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn ++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Malondialdehyde determination as index of lipid peroxidation.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.

            Among the heavy metal-binding ligands in plant cells the phytochelatins (PCs) and metallothioneins (MTs) are the best characterized. PCs and MTs are different classes of cysteine-rich, heavy metal-binding protein molecules. PCs are enzymatically synthesized peptides, whereas MTs are gene-encoded polypeptides. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species while the completion of the Arabidopsis genome sequence has allowed the identification of the entire suite of MT genes in a higher plant. Recent advances in understanding the regulation of PC biosynthesis and MT gene expression and the possible roles of PCs and MTs in heavy metal detoxification and homeostasis are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.

              The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                23 October 2014
                : 9
                : 10
                : e111379
                Affiliations
                [1]Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
                National Taiwan University, Taiwan
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AM BJ. Performed the experiments: AKC MKP VT. Analyzed the data: AM AKC. Wrote the paper: AKC AM.

                Article
                PONE-D-13-52176
                10.1371/journal.pone.0111379
                4207811
                25340650
                a4f5f270-b678-4808-9b6e-a872f080533c
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 December 2013
                : 1 October 2014
                Page count
                Pages: 12
                Funding
                This study was supported by the Council of Scientific and Industrial Research (CSIR, www.csir.res.in), Government of India, New Delhi (BSC0109–SIMPLE; Senior Research Fellowship to AKC and VT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Agricultural Biotechnology
                Genetically Modified Organisms
                Genetically Modified Plants
                Biotechnology
                Plant Biotechnology
                Plant Science
                Ecology and Environmental Sciences
                Environmental Protection

                Uncategorized
                Uncategorized

                Comments

                Comment on this article