10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neurotrophin, brain-derived neurotrophic factor, prevents motoneuron cell death during the normal development of the chick embryo. Brain-derived neurotrophic factor is a ligand for the low-affinity NGF receptor, p75, and for the high-affinity neurotrophin receptor, trkB. If motoneurons respond directly to brain-derived neurotrophic factor then they must possess at least one, and possibly both, of these receptors during the period of naturally occurring cell death. Histological sections from the lumbar region of chick embryos were probed for the presence of trkB and p75 mRNA using digoxigenin-labeled anti-sense RNA probes. p75 mRNA was present in spinal cord motoneurons at stages of development that correlate with motoneuron cell death. Immunohistochemical localization also revealed that p75 protein was present in motoneurons, primarily along the ventral roots and developing intramuscular nerves. In contrast trkB mRNA was not present in chick motoneurons until after the process of cell death was underway. The timing of trkB expression suggested that some motoneurons, i.e., those that die prior to the onset of trkB expression, may be insensitive to brain-derived neurotrophic factor. This was confirmed by comparing the number of surviving motoneurons following different in vivo treatment paradigms. The evidence indicates that motoneurons undergo a temporal shift in sensitivity to brain-derived neurotrophic factor.

          Related collections

          Author and article information

          Journal
          Development
          Development (Cambridge, England)
          0950-1991
          0950-1991
          Feb 1996
          : 122
          : 2
          Affiliations
          [1 ] Department of Neurobiology and Anatomy, Wake Forest University, Bowman Gray School of Medicine, Winston-Salem, NC 27157, USA.
          Article
          10.1242/dev.122.2.715
          8625822
          a539f248-2e6e-4e28-9542-9e84574e3fe6
          History

          Comments

          Comment on this article