57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Danger signals released upon cell damage can cause excessive immune-mediated tissue destruction such as that found in acute graft-versus-host disease (GVHD), allograft rejection and systemic inflammatory response syndrome. Given that ATP is found in small concentrations in the extracellular space under physiological conditions, and its receptor P2X(7)R is expressed on several immune cell types, ATP could function as a danger signal when released from dying cells. We observed increased ATP concentrations in the peritoneal fluid after total body irradiation, and during the development of GVHD in mice and in humans. Stimulation of antigen-presenting cells (APCs) with ATP led to increased expression of CD80 and CD86 in vitro and in vivo and actuated a cascade of proinflammatory events, including signal transducer and activator of transcription-1 (STAT1) phosphorylation, interferon-γ (IFN-γ) production and donor T cell expansion, whereas regulatory T cell numbers were reduced. P2X(7)R expression increased when GVHD evolved, rendering APCs more responsive to the detrimental effects of ATP, thereby providing positive feedback signals. ATP neutralization, early P2X(7)R blockade or genetic deficiency of P2X(7)R during GVHD development improved survival without immune paralysis. These data have major implications for transplantation medicine, as pharmacological interference with danger signals that act via P2X(7)R could lead to the development of tolerance without the need for intensive immunosuppression.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells.

          IL-2(-/-) mice develop autoimmunity despite having relatively normal numbers of regulatory T cells (Tregs). In contrast, we demonstrate that IL-2(-/-) x IL-15(-/-) and IL-2Rbeta(-/-) mice have a significant decrease in Treg numbers. Ectopic expression of foxp3 in a subset of CD4(+) T cells rescued Treg development and prevented autoimmunity in IL-2Rbeta(-/-) mice, suggesting that IL-2Rbeta-dependent signals regulate foxp3 expression in Tregs. Subsequent analysis of IL-2Rbeta-dependent signal transduction pathways established that the transcription factor STAT5 is necessary and sufficient for Treg development. Specifically, T cell-specific deletion of STAT5 prevented Treg development; conversely, reconstitution of IL-2Rbeta(-/-) mice with bone marrow cells expressing an IL-2Rbeta mutant that exclusively activates STAT5 restored Treg development. Finally, STAT5 binds to the promoter of the foxp3 gene suggesting that IL-2Rbeta-dependent STAT5 activation promotes Treg differentiation by regulating expression of foxp3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase

            Background There is growing awareness that tumour cells build up a “self-advantageous” microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. Methodology/Principal Findings Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. Conclusions/Significance Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered cytokine production in mice lacking P2X(7) receptors.

              The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                December 2010
                November 21 2010
                December 2010
                : 16
                : 12
                : 1434-1438
                Article
                10.1038/nm.2242
                21102458
                a53c7841-b560-4a0b-90d5-228bc8e3c067
                © 2010

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article