33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of PCSK5 Expression in Mouse Ovarian Follicle Development: Identification of the Inhibin α- and β-Subunits as Candidate Substrates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and β B-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins.

          Limited endoproteolysis of inactive precursor proteins at sites marked by paired or multiple basic amino acids is a widespread process by which biologically active peptides and proteins are produced within the secretory pathway in eukaryotic cells. The identification of a novel family of endoproteases homologous with bacterial subtilisins and yeast Kex2p has accelerated progress in understanding the complex mechanisms underlying the production of the bioactive materials. Seven distinct proprotein convertases of this family (furin, PC2, PC1/PC3, PC4, PACE4, PC5/PC6, LPC/PC7/PC8/SPC7) have been identified in mammalian species, some having isoforms generated via alternative splicing. The family has been shown to be responsible for conversion of precursors of peptide hormones, neuropeptides, and many other proteins into their biologically active forms. Furin, the first proprotein convertase to be identified, has been most extensively studied. It has been shown to be expressed in all tissues and cell lines examined and to be mainly localized in the trans-Golgi network, although some proportion of the furin molecules cycle between this compartment and the cell surface. This endoprotease is capable of cleaving precursors of a wide variety of proteins, including growth factors, serum proteins, including proteases of the blood-clotting and complement systems, matrix metalloproteinases, receptors, viral-envelope glycoproteins and bacterial exotoxins, typically at sites marked by the consensus Arg-Xaa-(Lys/Arg)-Arg sequence. The present review covers the structure and function of mammalian subtilisin/Kex2p-like proprotein convertases, focusing on furin (EC 3.4.21.85).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The proprotein convertases.

            The major endoproteolytic processing enzymes of the secretory pathway are the subtilisin-like proprotein convertases (SPCs). Furin (SPC1) has emerged as one of the major processing enzymes of the constitutive secretory pathway and its localization in the trans-Golgi network and mechanism of autoactivation have been studied in considerable detail. Recent gene disruption experiments and the study of naturally-occurring mutations underscore the importance of PC2 (prohormones convertase 2, or SPC2) and PC1/PC3 (prohormone convertase 1/3, or SPC3) in the processing of a wide variety of hormone and neuropeptide precursors. The role of Carboxypeptidase E (CPE) in the removal of carboxy-terminal basic residues exposed by the endoproteases was shown to be necessary for efficient endoproteolytic processing of proinsulin and several other protein precursors. Many biologically active peptides are also amidated after their proteolytic processing by peptidylglycine alpha-amidating monooxygenase (PAM) and recent X-ray studies of the peptidyl alpha-hydroxylating monooxygenase component of PAM have shed new light on the role of copper in the mechanism of this reaction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin.

              The objective of this study was to determine whether follicles grown within human ovarian cortical strip culture for 6 days in serum-free medium could be isolated at the secondary stage of pre-antral development and grown in vitro to the late pre-antral/early antral stage during a 4 day culture period. Ovarian cortical biopsies were obtained from six women aged 26-40 years, with informed consent, during elective Caesarean section. Small tissue slices of ovarian cortex, with underlying stromal tissue removed, were cultured in serum-free medium for 6 days and at the end of this period pre-antral (secondary) follicles were dissected from the strips. Seventy-four intact pre-antral follicles ranging in size (66-132 microm) (mean size 100 microm +/- 3.4) were selected for further culture. Follicles were placed individually within V-shaped microwell culture plates in serum-free medium in the presence (n = 38) or absence (n = 36) of 100 ng/ml of human recombinant activin A. Pre-antral follicles grown for 4 days in the presence of activin A grew to a larger size (mean diameter 143 microm +/- 7.4) than those grown in control medium (mean diameter 111 microm +/- 8) (P 0.005). Of the follicles surviving the entire culture period, 30% of those cultured in the presence of activin A showed normal morphology with intact oocytes and antral formation. None of the follicles grown in control medium developed antral cavities and >90% of those follicles collected at the end of the culture period showed signs of oocyte degeneration. The results reported here demonstrate that under certain conditions, it is possible to achieve accelerated oocyte/follicle development from human primordial/primary follicles. This provides the first encouraging step towards achieving full in vitro growth of human oocytes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                8 March 2011
                : 6
                : 3
                : e17348
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
                [2 ]Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
                [3 ]Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, United States of America
                State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, China
                Author notes

                Conceived and designed the experiments: MA TKW. Performed the experiments: MA LL MX AM SK. Analyzed the data: MA LL TKW. Contributed reagents/materials/analysis tools: LL MX SK. Wrote the paper: MA TKW.

                [¤]

                Current address: Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada

                Article
                PONE-D-10-02818
                10.1371/journal.pone.0017348
                3050889
                21408162
                a58adbf0-bfa3-4acf-8889-8162b2739b7c
                Antenos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 September 2010
                : 29 January 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Cell Physiology
                Biochemistry
                Proteins
                Growth Factors
                Hormones
                Molecular Cell Biology
                Gene Expression
                Protein Translation

                Uncategorized
                Uncategorized

                Comments

                Comment on this article