11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Importance of the Diaphragm in Neuromotor Function in the Patient with Chronic Obstructive Pulmonary Disease

      article-commentary

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic obstructive pulmonary disease (COPD) is a constant and chronic narrowing of the respiratory airways, with numerous associated symptoms, not always related to the pathological adaptation of the lungs. Statistical projections show that COPD could become the third leading cause of death globally by 2030, with a significant increase in deaths by 2060. Skeletal muscle dysfunction, including the diaphragm, is one of the causes linked to the increase in mortality and hospitalization. Little emphasis is given by the scientific literature to the importance of the diaphragm towards functional neuromotor pathological expressions. The article reviews the adaptation of the skeletal muscles, with greater attention to the adaptations of the diaphragm, thereby highlighting the non-physiological variations that the main respiratory muscle undergoes and the neuromotor impairment found in COPD. The text could be an important reflection from a clinical and rehabilitation point of view, to direct greater attention to the function and adaptation of the diaphragm muscle.

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Circuitry and functional aspects of the insular lobe in primates including humans.

          The progress made in understanding the insula in the decade following an earlier review (Augustine, Neurol. Res., 7 (1985) 2-10) is examined in this review. In these ten years, connections have been described between the insula and the orbital cortex, frontal operculum, lateral premotor cortex, ventral granular cortex, and medial area 6 in the frontal lobe. Insular connections between the second somatosensory area and retroinsular area of the parietal lobe have been documented. The insula was found to connect with the temporal pole and the superior temporal sulcus of the temporal lobe. It has an abundance of local intrainsular connections and projections to subdivisions of the cingulate gyrus. The insula has connections with the lateral, lateral basal, central, cortical and medial amygdaloid nuclei. It also connects with nonamygdaloid areas such as the perirhinal cortex, entorhinal, and periamygdaloid cortex. The thalamic taste area, the parvicellular part of the ventral posteromedial nucleus, projects fibers to the ipsilateral insular-opercular cortex. In the past decade, confirmation has been given to the insula as a visceral sensory area, visceral motor area, motor association area, vestibular area, and language area. Recent studies have expanded the role of the insula as a somatosensory area, emphasizing its multifaceted, sensory role. The idea of the insula as limbic integration cortex has been affirmed and its role in Alzheimer's disease suggested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of the human diaphragm during a repetitive postural task.

            The co-ordination between respiratory and postural functions of the diaphragm was investigated during repetitive upper limb movement. It was hypothesised that diaphragm activity would occur either tonically or phasically in association with the forces from each movement and that this activity would combine with phasic respiratory activity. Movements of the upper limb and ribcage were measured while standing subjects performed repetitive upper limb movements 'as fast as possible'. Electromyographic (EMG) recordings of the costal diaphragm were made using intramuscular electrodes in four subjects. Surface electrodes were placed over the deltoid and erector spinae muscles. In contrast to standing at rest, diaphragm activity was present throughout expiration at 78 +/- 17% (mean +/- s.d.) of its peak inspiratory magnitude during repeated upper limb movement. Bursts of deltoid and erector spinae EMG activity occurred at the limb movement frequency (approximately 2.9 Hz). Although the majority of diaphragm EMG power was at the respiratory frequency (approximately 0.4 Hz), a peak was also present at the movement frequency. This finding was corroborated by averaged EMG activity triggered from upper limb movement. In addition, diaphragm EMG activity was coherent with ribcage motion at the respiratory frequency and with upper limb movement at the movement frequency. The diaphragm response was similar when movement was performed while sitting. In addition, when subjects moved with increasing frequency the peak upper limb acceleration correlated with diaphragm EMG amplitude. These findings support the argument that diaphragm contraction is related to trunk control. The results indicate that activity of human phrenic motoneurones is organised such that it contributes to both posture and respiration during a task which repetitively challenges trunk posture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Proprioceptive Changes Impair Balance Control in Individuals with Chronic Obstructive Pulmonary Disease

              Introduction Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD). However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness. Methods Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control. Results Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p = 0.037). Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p = 0.047), decreased anterior body sway during back muscle vibration (p = 0.025), and increased posterior body sway during simultaneous ankle-muscle vibration (p = 0.002). Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p = 0.037). Conclusions Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the fall risk in individuals with COPD.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                copd
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove
                1176-9106
                1178-2005
                11 May 2023
                2023
                : 18
                : 837-848
                Affiliations
                [1 ]Department of Cardiology, Institute of Hospitalization and Care with Scientific Address, Foundation Don Carlo Gnocchi IRCCS S Maria Nascente , Milano, Italy
                [2 ]Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
                Author notes
                Correspondence: Bruno Bordoni, Email bordonibruno@hotmail.com
                Author information
                http://orcid.org/0000-0002-4949-5126
                http://orcid.org/0000-0003-1798-9196
                http://orcid.org/0000-0002-7129-585X
                Article
                404190
                10.2147/COPD.S404190
                10184771
                37197600
                a58bebb6-a773-46e0-9043-abef37479f7b
                © 2023 Bordoni et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 09 January 2023
                : 13 April 2023
                Page count
                Figures: 4, References: 101, Pages: 12
                Funding
                Funded by: Italian Ministry of Health;
                The article has been funded by the Italian Ministry of Health.
                Categories
                Commentary

                Respiratory medicine
                diaphragm,copd,physiotherapy,rehabilitation,pain,fascia,ageing,osteopathic
                Respiratory medicine
                diaphragm, copd, physiotherapy, rehabilitation, pain, fascia, ageing, osteopathic

                Comments

                Comment on this article