Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insecticidal Activity of Extracts, Fractions, and Pure Molecules of Cissampelos pareira Linnaeus against Aphid, Aphis craccivora Koch

      , , , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aphis craccivora Koch is a polyphagous and major pest of leguminous crops causing significant damage by reducing the yield. Repeated application of synthetic insecticides for the control of aphids has led to development of resistance. Therefore, the present study aimed to screen the insecticidal activity of root/stem extracts/fractions, and pure molecules from Cissampelos pareira Linnaeus against A. craccivora for identification of lead(s). Among root extract/fractions, the n-hexane fraction was found most effective (LC50 = 1828.19 mg/L) against A. craccivora, followed by parent extract (LC50 = 2211.54 mg/L). Among stem extract/fractions, the n-hexane fraction (LC50 = 1246.92 mg/L) was more effective than the water and n-butanol fractions. Based on GC and GC-MS analysis, among different compounds identified in the n-hexane fraction of root and stem, ethyl palmitate (known to possess insecticidal activity) was present in the highest concentration (24.94 to 52.95%) in both the fractions. Among pure molecules, pareirarineformate was found most effective (LC50 = 1491.93 mg/L) against A. craccivora, followed by cissamine (LC50 = 1556.31 mg/L). Parent extract and fractions of C. pareira possess promising activity against aphid. Further, field bio-efficacy studies are necessary to validate the current findings for the development of botanical formulation.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Book: not found

          The SAGE Encyclopedia of Communication Research Methods

          Mike Allen (2017)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host plant selection by aphids: behavioral, evolutionary, and applied perspectives.

            As phloem feeders and major vectors of plant viruses, aphids are important pests of agricultural and horticultural crops worldwide. The processes of aphid settling and reproduction on plants therefore have a direct economic impact, and a better understanding of these events may lead to improved management strategies. Aphids are also important model organisms in the analysis of population differentiation and speciation in animals, and new ideas on plant utilization influence our understanding of the mechanisms generating biological diversity. Recent research suggests that the dominant cues controlling plant preference and initiation of reproduction are detected early during the stylet penetration process, well before the nutrient supply (phloem) is contacted. Aphids regularly puncture cells along the stylet pathway and ingest cytosolic samples, and the cues stimulating settling and parturition likely are metabolites present in peripheral (nonvascular) plant cells. We discuss these findings and their implications for aphid evolution and management.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Preparation of ester derivatives of fatty acids for chromatographic analysis

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                February 2022
                January 19 2022
                : 27
                : 3
                : 633
                Article
                10.3390/molecules27030633
                a5950870-8691-4b3f-8e0f-b38ce328a274
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article