6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Scalable submicrometer additive manufacturing

      , , , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-throughput fabrication techniques for generating arbitrarily complex three-dimensional structures with nanoscale features are desirable across a broad range of applications. Two-photon lithography (TPL)–based submicrometer additive manufacturing is a promising candidate to fill this gap. However, the serial point-by-point writing scheme of TPL is too slow for many applications. Attempts at parallelization either do not have submicrometer resolution or cannot pattern complex structures. We overcome these difficulties by spatially and temporally focusing an ultrafast laser to implement a projection-based layer-by-layer parallelization. This increases the throughput up to three orders of magnitude and expands the geometric design space. We demonstrate this by printing, within single-digit millisecond time scales, nanowires with widths smaller than 175 nanometers over an area one million times larger than the cross-sectional area.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional microfabrication with two-photon-absorbed photopolymerization.

          We propose a method for three-dimensional microfabrication with photopolymerization stimulated by two-photon absorption with a pulsed infrared laser. An experimental system for the microfabrication has been developed with a Ti:sapphire laser whose oscillating wavelength and pulse width are 790 nm and 200 fs, respectively. The usefulness of the proposed method has been verified by fabrication of several kinds of microstructure by use of a resin consisting of photoinitiators, urethane acrylate monomers, and urethane acrylate oligomers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.

            Ceramics have some of the highest strength- and stiffness-to-weight ratios of any material but are suboptimal for use as structural materials because of their brittleness and sensitivity to flaws. We demonstrate the creation of structural metamaterials composed of nanoscale ceramics that are simultaneously ultralight, strong, and energy-absorbing and can recover their original shape after compressions in excess of 50% strain. Hollow-tube alumina nanolattices were fabricated using two-photon lithography, atomic layer deposition, and oxygen plasma etching. Structures were made with wall thicknesses of 5 to 60 nanometers and densities of 6.3 to 258 kilograms per cubic meter. Compression experiments revealed that optimizing the wall thickness-to-radius ratio of the tubes can suppress brittle fracture in the constituent solid in favor of elastic shell buckling, resulting in ductile-like deformation and recoverability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Volumetric additive manufacturing via tomographic reconstruction

              Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to the reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We print features as small as 0.3 mm in engineering acrylate polymers, as well as printing soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other pre-existing solid objects, allowing for multi-material fabrication. We developed models to describe speed and spatial resolution capabilities. We also demonstrated printing times of 30–120 s for diverse centimeter-scale objects.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                October 03 2019
                October 04 2019
                October 03 2019
                October 04 2019
                : 366
                : 6461
                : 105-109
                Article
                10.1126/science.aax8760
                31604310
                a5d3d1ca-5878-4d47-8ebe-27172deff650
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article