135
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control immunity. Here, we show that in response to Lipopolysaccharides (LPS), several microRNAs (miRNAs) are regulated in human monocyte-derived dendritic cells. Among these miRNAs, miR-155 is highly up-regulated during maturation. Using LNA silencing combined to microarray technology, we have identified the Toll-like receptor/interleukin-1 (TLR/IL-1) inflammatory pathway as a general target of miR-155. We further demonstrate that miR-155 directly controls the level of TAB2, an important signal transduction molecule. Our observations suggest, therefore, that in mature human DCs, miR-155 is part of a negative feedback loop, which down-modulates inflammatory cytokine production in response to microbial stimuli.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Points of control in inflammation.

          Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, if targeted destruction and assisted repair are not properly phased, inflammation can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. Inflammation may be considered in terms of its checkpoints, where binary or higher-order signals drive each commitment to escalate, go signals trigger stop signals, and molecules responsible for mediating the inflammatory response also suppress it, depending on timing and context. The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Taking dendritic cells into medicine.

            Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TLR signaling.

              The Toll-like receptor (TLR) family plays an instructive role in innate immune responses against microbial pathogens, as well as the subsequent induction of adaptive immune responses. TLRs recognize specific molecular patterns found in a broad range of microbial pathogens such as bacteria and viruses, triggering inflammatory and antiviral responses and dendritic cell maturation, which result in the eradication of invading pathogens. Individual TLRs interact with different combinations of adapter proteins and activate various transcription factors such as nuclear factor (NF)-kappaB, activating protein-1 and interferon regulatory factors, driving a specific immune response. This review outlines the recent advances in our understanding of TLR-signaling pathways and their roles in immune responses. Further, we also discuss a new concept of TLR-independent mechanisms for recognition of microbial pathogens.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 24 2009
                February 24 2009
                February 04 2009
                : 106
                : 8
                : 2735-2740
                Article
                10.1073/pnas.0811073106
                2650335
                19193853
                a6696750-29ea-4375-8b8a-54819fc70085
                © 2009

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article