Blog
About


  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The spherical nucleic acids mRNA detection paradox

Read Bookmark
There is no summary for this article yet

Abstract

From the 1950s onwards, our understanding of the formation and intracellular trafficking of membrane vesicles was informed by experiments in which cells were exposed to gold nanoparticles and their uptake and localisation, studied by electron microscopy. In the last decade, building on progress in the synthesis of gold nanoparticles and their controlled functionalisation with a large variety of biomolecules (DNA, peptides, polysaccharides), new applications have been proposed, including the imaging and sensing of intracellular events. Yet, as already demonstrated in the 1950s, uptake of nanoparticles results in confinement within an intracellular vesicle which in principle should preclude sensing of cytosolic events. To study this apparent paradox, we focus on a commercially available nanoparticle probe that detects mRNA through the release of a fluorescently-labelled oligonucleotide (unquenching the fluorescence) in the presence of the target mRNA. Using electron, fluorescence and photothermal microscopy, we show that the probes remain in endocytic compartments and that they do not report on mRNA level. We suggest that the validation of any nanoparticle-based probes for intracellular sensing should include a quantitative and thorough demonstration that the probes can reach the cytosolic compartment.

Related collections

Most cited references 37

  • Record: found
  • Abstract: found
  • Article: not found

Toxic potential of materials at the nanolevel.

Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
  • Record: found
  • Abstract: found
  • Article: not found

A guided tour into subcellular colocalization analysis in light microscopy.

It is generally accepted that the functional compartmentalization of eukaryotic cells is reflected by the differential occurrence of proteins in their compartments. The location and physiological function of a protein are closely related; local information of a protein is thus crucial to understanding its role in biological processes. The visualization of proteins residing on intracellular structures by fluorescence microscopy has become a routine approach in cell biology and is increasingly used to assess their colocalization with well-characterized markers. However, image-analysis methods for colocalization studies are a field of contention and enigma. We have therefore undertaken to review the most currently used colocalization analysis methods, introducing the basic optical concepts important for image acquisition and subsequent analysis. We provide a summary of practical tips for image acquisition and treatment that should precede proper colocalization analysis. Furthermore, we discuss the application and feasibility of colocalization tools for various biological colocalization situations and discuss their respective strengths and weaknesses. We have created a novel toolbox for subcellular colocalization analysis under ImageJ, named JACoP, that integrates current global statistic methods and a novel object-based approach.
  • Record: found
  • Abstract: found
  • Article: not found

Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells

High concentrations of airborne particles have been associated with increased pulmonary and cardiovascular mortality, with indications of a specific toxicologic role for ultrafine particles (UFPs; particles < 0.1 μm). Within hours after the respiratory system is exposed to UFPs, the UFPs may appear in many compartments of the body, including the liver, heart, and nervous system. To date, the mechanisms by which UFPs penetrate boundary membranes and the distribution of UFPs within tissue compartments of their primary and secondary target organs are largely unknown. We combined different experimental approaches to study the distribution of UFPs in lungs and their uptake by cells. In the in vivo experiments, rats inhaled an ultrafine titanium dioxide aerosol of 22 nm count median diameter. The intrapulmonary distribution of particles was analyzed 1 hr or 24 hr after the end of exposure, using energy-filtering transmission electron microscopy for elemental microanalysis of individual particles. In an in vitro study, we exposed pulmonary macrophages and red blood cells to fluorescent polystyrene microspheres (1, 0.2, and 0.078 μm) and assessed particle uptake by confocal laser scanning microscopy. Inhaled ultrafine titanium dioxide particles were found on the luminal side of airways and alveoli, in all major lung tissue compartments and cells, and within capillaries. Particle uptake in vitro into cells did not occur by any of the expected endocytic processes, but rather by diffusion or adhesive interactions. Particles within cells are not membrane bound and hence have direct access to intracellular proteins, organelles, and DNA, which may greatly enhance their toxic potential.

Author and article information

Affiliations
[1]Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
[2]Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
Author notes
[*]Corresponding author's e-mail address: rapha@123456liverpool.ac.uk
Contributors
Journal
SOR-CHEM
ScienceOpen Research
ScienceOpen
2199-1006
17 November 2015
29 March 2016
: 0 (ID: a6754b9a-273e-4ccb-b965-2c98d96ac087)
: 0
: 1-10
© 2016 Mason et al.

This work has been published open access under Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com.

Counts
Figures: 5, Tables: 0, References: 33, Pages: 10
Product
Categories
Original article
ScienceOpen disciplines:
Keywords:

Comments

Comment on this article

Register to benefit from advanced discovery features on more than 33,000,000 articles

Already registered?

Email*:
Password*: