47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Type 1 Fimbriae, a Colonization Factor of Uropathogenic Escherichia coli, Are Controlled by the Metabolic Sensor CRP-cAMP

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues.

          Author Summary

          Attachment of bacteria to the surface of host tissues is a crucial initial step in the establishment of bacterial infections. This process is mediated by adhesins, such as the type 1 fimbriae of Escherichia coli, which play a key role during urinary tract infections by mediating adhesion to the uroepithelium. The expression of type 1 fimbriae is finely regulated attending to environmental signals and is under phase variation control, which determines the percentage of fimbriated cells in the population. In this report, we show that the expression of type 1 fimbriae is repressed by a metabolic sensor of the cell, the global regulatory complex CRP-cAMP. We demonstrate that CRP-cAMP affects the switching outcome by selectively inhibiting the recombination process in one direction only, resulting in a lower percentage of fimbriated cells. Such a switch to the non-fimbriated state after successful adhesion might be advantageous in the urinary tract, where the immune mechanisms of the host favor the removal of bacteria expressing immunogenic surface structures. Understanding the regulatory networks that govern regulation of virulence and colonization factors is both of basic interest and might help to develop novel strategies to treat bacterial infections.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

          <p>The first two editions of this manual have been mainstays of molecular biology for nearly twenty years, with an unrivalled reputation for reliability, accuracy, and clarity.<br>In this new edition, authors Joseph Sambrook and David Russell have completely updated the book, revising every protocol and adding a mass of new material, to broaden its scope and maintain its unbeatable value for studies in genetics, molecular cell biology, developmental biology, microbiology, neuroscience, and immunology.<br>Handsomely redesigned and presented in new bindings of proven durability, this three–volume work is essential for everyone using today’s biomolecular techniques.<br>The opening chapters describe essential techniques, some well–established, some new, that are used every day in the best laboratories for isolating, analyzing and cloning DNA molecules, both large and small.<br>These are followed by chapters on cDNA cloning and exon trapping, amplification of DNA, generation and use of nucleic acid probes, mutagenesis, and DNA sequencing.<br>The concluding chapters deal with methods to screen expression libraries, express cloned genes in both prokaryotes and eukaryotic cells, analyze transcripts and proteins, and detect protein–protein interactions.<br>The Appendix is a compendium of reagents, vectors, media, technical suppliers, kits, electronic resources and other essential information.<br>As in earlier editions, this is the only manual that explains how to achieve success in cloning and provides a wealth of information about why techniques work, how they were first developed, and how they have evolved. </p>
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili.

            We have used Escherichia coli as a model system to investigate the initiation of biofilm formation. Here, we demonstrate that E. coli forms biofilms on multiple abiotic surfaces in a nutrient-dependent fashion. In addition, we have isolated insertion mutations that render this organism defective in biofilm formation. One-half of these mutations was found to perturb normal flagellar function. Using defined fli, flh, mot and che alleles, we show that motility, but not chemotaxis, is critical for normal biofilm formation. Microscopic analyses of these mutants suggest that motility is important for both initial interaction with the surface and for movement along the surface. In addition, we present evidence that type I pili (harbouring the mannose-specific adhesin, FimH) are required for initial surface attachment and that mannose inhibits normal attachment. In light of the observations presented here, a working model is discussed that describes the roles of both motility and type I pili in biofilm development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid.

              Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2009
                February 2009
                20 February 2009
                : 5
                : 2
                : e1000303
                Affiliations
                [1 ]Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
                [2 ]Institute of Medical Microbiology and Immunology, University of Pécs Medical School, Budapest, Hungary
                [3 ]Veterinary Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
                [4 ]Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
                Institut Pasteur, France
                Author notes

                Conceived and designed the experiments: CMM AÅ JS LE BEU CB. Performed the experiments: CMM AÅ JS CB. Analyzed the data: CMM AÅ JS LE BEU CB. Contributed reagents/materials/analysis tools: JS LE BEU CB. Wrote the paper: CMM CB.

                Article
                08-PLPA-RA-1024R2
                10.1371/journal.ppat.1000303
                2636892
                19229313
                a6c45495-17b9-4481-a742-4ea5391bd042
                Müller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 September 2008
                : 18 January 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology/Microbial Physiology and Metabolism
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Microbial Growth and Development

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article