7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromosomal Locations and Interactions of Four Loci Associated With Seed Coat Color in Watermelon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Different species of edible seed watermelons ( Citrullus spp.) are cultivated in Asia and Africa for their colorful nutritious seeds. Consumer preference varies for watermelon seed coat color. Therefore, it is an important consideration for watermelon breeders. In 1940s, a genetic model of four genes, R, T, W and D, was proposed to elucidate the inheritance of seed coat color in watermelon. In this study, we developed three segregating F 2 populations: Sugar Baby (dotted black seed, RRTTWW) × plant introduction (PI) 482379 (green seed, rrTTWW), Charleston Gray (dotted black seed, RRTTWW) × PI 189225 (red seed, rrttWW), and Charleston Gray (dotted black seed, RRTTWWdd) × UGA147 (clump seed, RRTTwwDD) to re-examine the four-gene model and to map the four genes. In the dotted black × green population, the dotted black seed coat color ( R_) is dominant to green seed coat color ( rr). In the dotted black × red population, the dominant dotted black seed coat color and the recessive red seed coat color segregate for the R and T genes, where the R gene is dominantly epistatic to the T gene. However, the inheritance of the T locus did not fit the four-gene model, thus we named it T 1 . In the dotted black × clump population, the clump seed coat color and the dotted black seed coat color segregate for W and D, where D is recessively epistatic to W. The R, T 1 , W, and D loci were mapped on chromosomes 3, 5, 6, and 8, respectively, using QTL-seq and genotyping-by-sequencing (GBS). Kompetitive Allele Specific PCR (KASP™) assays and SNP markers linked to the four loci were developed to facilitate maker-assisted selection (MAS) for watermelon seed coat color.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Primer3Plus, an enhanced web interface to Primer3

          Here we present Primer3Plus, a new web interface to the popular Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3. Primer3 consists of a command line program and a web interface. The web interface is one large form showing all of the possible options. This makes the interface powerful, but at the same time confusing for occasional users. Primer3Plus provides an intuitive user interface using present-day web technologies and has been developed in close collaboration with molecular biologists and technicians regularly designing primers. It focuses on the task at hand, and hides detailed settings from the user until these are needed. We also added functionality to automate specific tasks like designing primers for cloning or step-wise sequencing. Settings and designed primer sequences can be stored locally for later use. Primer3Plus supports a range of common sequence formats, such as FASTA. Finally, primers selected by Primer3Plus can be sent to an order form, allowing tight integration into laboratory ordering systems. Moreover, the open architecture of Primer3Plus allows easy expansion or integration of external software packages. The Primer3Plus Perl source code is available under GPL license from SourceForge. Primer3Plus is available at http://www.bioinformatics.nl/primer3plus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations.

            The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker-assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time-consuming and labor-intensive. Here we report the rapid identification of plant QTLs by whole-genome resequencing of DNAs from two populations each composed of 20-50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL-seq as applied to plant species. We applied QTL-seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL-seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber.

              Next-generation sequencing enabled a fast discovery of a major QTL controlling early flowering in cucumber, corresponding to the FT gene conditioning flowering time in Arabidopsis. Next-generation sequencing technologies are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Early flowering is an important agronomic trait in cucumber (Cucumis sativus L.), but the underlying genetic mechanism is unknown. In this study, we identified a candidate gene for early flowering QTL, Ef1.1 through QTL-seq. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines "Muromskij" (early flowering) and "9930" (late flowering) suggested quantitative nature of flowering time in cucumber. Genome-wide comparison of SNP profiles between the early and late-flowering bulks constructed from F2 plants identified a major QTL, designated Ef1.1 on cucumber chromosome 1 for early flowering in Muromskij, which was confirmed by microsatellite marker-based classical QTL mapping in the F2 population. Joint QTL-seq and traditional QTL analysis delimited Ef1.1 to an 890 kb genomic region. A cucumber gene, Csa1G651710, was identified in this region, which is a homolog of the FLOWERING LOCUS T (FT), the main flowering switch gene in Arabidopsis. Quantitative RT-PCR study of the expression level of Csa1G651710 revealed significantly higher expression in early flowering genotypes. Data presented here provide support for Csa1G651710 as a possible candidate gene for early flowering in the cucumber line Muromskij.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                25 June 2019
                2019
                : 10
                : 788
                Affiliations
                [1] 1 Institute for Plant Breeding, Genetics and Genomics, University of Georgia , Athens, GA, United States
                [2] 2 Department of Horticulture, University of Georgia , Athens, GA, United States
                Author notes

                Edited by: Feishi Luan, Northeast Agricultural University, China

                Reviewed by: Nebahat Sari, Çukurova University, Turkey; Xingping Yang, Jiangsu Academy of Agricultural Sciences (JAAS), China; Shengping Zhang, Insititute of Vegetables and Flowers (CAAS), China

                *Correspondence: Cecilia McGregor, cmcgre1@ 123456uga.edu

                This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00788
                6603093
                a6e68d84-ca16-4d1a-884c-95cf477854a1
                Copyright © 2019 Paudel, Clevenger and McGregor.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 March 2019
                : 29 May 2019
                Page count
                Figures: 4, Tables: 1, Equations: 3, References: 46, Pages: 11, Words: 7858
                Funding
                Funded by: Fulbright Foreign Student Program
                Award ID: G-1-00001
                Funded by: U.S. Department of Agriculture Research and Education
                Award ID: GEO-2009-04819
                Funded by: U.S. Department of Agriculture Specialty Crop Research Initiative
                Award ID: 2014-51181-22471
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                citrullus lanatus,citrullus amarus,edible seed watermelon,seed coat color,qtl-seq,kasp™ assay,snp markers,epistasis

                Comments

                Comment on this article