Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trop2 Guarantees Cardioprotective Effects of Cortical Bone-Derived Stem Cells on Myocardial Ischemia/Reperfusion Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cell transplantation represents a promising therapeutic approach for myocardial ischemia/reperfusion (I/R) injury, where cortical bone-derived stem cells (CBSCs) stand out and hold superior cardioprotective effects on myocardial infarction than other types of stem cells. However, the molecular mechanism underlying CBSCs function on myocardial I/R injury is poorly understood. In a previous study, we reported that Trop2 (trophoblast cell-surface antigen 2) is expressed exclusively on the CBSCs membrane, and is involved in regulation of proliferation and differentiation of CBSCs. In this study, we found that the Trop2 is essential for the ameliorative effects of CBSCs on myocardial I/R-induced heart damage via promoting angiogenesis and inhibiting cardiomyocytes apoptosis in a paracrine manner. Trop2 is required for the colonization of CBSCs in recipient hearts. When Trop2 was knocked out, CBSCs largely lost their functions in lowering myocardial infarction size, improving heart function, enhancing capillary density, and suppressing myocardial cell death. Mechanistically, activating the AKT/GSK3β/β-Catenin signaling axis contributes to the essential role of Trop2 in CBSCs-rendered cardioprotective effects on myocardial I/R injury. In conclusion, maintaining the expression and/or activation of Trop2 in CBSCs might be a promising strategy for treating myocardial infarction, I/R injury, and other related heart diseases.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone.

          Unlike humans, mouse bone marrow-derived mesenchymal stem cells (MSCs) cannot be easily harvested by adherence to plastic owing to the contamination of cultures by hematopoietic cells. The design of the protocol described here is based on the phenomenon that compact bones abound in MSCs and hematopoietic cells exist in the marrow cavities and the inner interfaces of the bones. The procedure includes flushing bone marrow out of the long bones, digesting the bone chips with collagenase type II, deprivation of the released cells and culturing the digested bone fragments, out of which fibroblast-like cells migrate and grow in the defined medium. The entire technique requires 5 d before the adherent cells are readily passaged. Further identification assays confirm that these cells are MSCs. We provide an easy and reproducible method to harvest mouse MSCs that does not require depletion of hematopoietic cells by sorting or immunomagnetic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Akt/GSK3 signaling in the action of psychotropic drugs.

            Psychotropic drugs acting on monoamine neurotransmission are major pharmacological treatments for neuropsychiatric conditions such as schizophrenia, depression, bipolar disorder, Tourette syndrome, ADHD, and Alzheimer disease. Independent lines of research involving biochemical and behavioral approaches in normal and/or genetically modified mice provide converging evidence for an involvement of the signaling molecules Akt and glycogen synthase kinase-3 (GSK3) in the regulation of behavior by dopamine and serotonin (5-HT). These signaling molecules have also received attention for their role in the actions of psychoactive drugs such as antidepressants, antipsychotics, lithium, and other mood stabilizers. Furthermore, investigations of the mechanism by which D2 dopamine receptors regulate Akt/GSK3 signaling strongly support the physiological relevance of a new modality of G protein-coupled receptor (GPCR) signaling involving the multifunctional scaffolding protein beta-arrestin 2. Elucidation of the contribution of multiple signaling pathways to the action of psychotropic drugs may provide a better biological understanding of psychiatric disorders and lead to more efficient therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.

              Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic-however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial IRI.
                Bookmark

                Author and article information

                Journal
                Cell Transplant
                Cell Transplant
                CLL
                spcll
                Cell Transplantation
                SAGE Publications (Sage CA: Los Angeles, CA )
                0963-6897
                1555-3892
                16 July 2018
                August 2018
                : 27
                : 8
                : 1256-1268
                Affiliations
                [1 ]Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
                [2 ]Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
                [3 ]Division of Biliary-Pancreatic Surgery and Endoscopy Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
                Author notes
                [*]Jianye Yang, Division of Cardiothoracic and Vascular Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China. Email: jianye.yang@ 123456hotmail.com
                Article
                10.1177_0963689718786882
                10.1177/0963689718786882
                6434467
                30008230
                a812e174-3a20-4f5b-a849-ea13c136c761
                © The Author(s) 2018

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 16 December 2017
                : 6 May 2018
                : 11 June 2018
                Funding
                Funded by: National Natural Science Foundation of China, FundRef https://doi.org/10.13039/501100001809;
                Award ID: 81400226
                Categories
                Original Articles

                myocardial ischemia/reperfusion injury,cbscs,trop2,apoptosis,angiogenesis

                Comments

                Comment on this article