2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production

      ,
      Land
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing demand for sustainably driven production systems, especially pork, requires a holistic or system thinking approach. Life Cycle Thinking (LCT) offers a robust methodological background as one of the approaches to achieving system analysis for a product along its lifecycle. On the other hand, Life Cycle Assessment (LCA) can perform state-of-art system analysis characterising its sustainability fronts as a compelling set of tools. Pork, as the most consumed meat across Europe (circa 34 kg per capita per year), compounded with the sector’s contribution to global greenhouse gases (GHG) doubling over the past decade necessitated this research. Our objective was to map hotspots along the value chain and recommend the best available practices for realising the sectoral contribution to carbon neutrality and climate change adaptation. To achieve the objective, we compared organic and conventional production systems by basing our analysis on Recipe midpoint 2016 (H) V1.13 as implemented in OpenLCA 1.10.2 using AGRIBALYSE® 3.0 datasets for eleven indicators. We found that producing 1 kg of pig meat under an organic production system had almost double the environmental impact of conventional systems for land use, water consumption, acidification, and ecotoxicity. Feed production and manure management are the significant hotspots accounting for over 90% of environmental impacts associated with 1 kg pig meat Liveweight (LW) production. Similarly, efficient conventional systems were less harmful to the environment in per capita unit of production and land use compared with organic ones in ten out of the eleven impacts evaluated. Implementing increased efficiency, reduced use of inputs for feed production, and innovative manure management practices with technological potential were some of the best practices the research recommended to realise minimal impacts on the identified hotspots.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mapping the Global Distribution of Livestock

          Livestock contributes directly to the livelihoods and food security of almost a billion people and affects the diet and health of many more. With estimated standing populations of 1.43 billion cattle, 1.87 billion sheep and goats, 0.98 billion pigs, and 19.60 billion chickens, reliable and accessible information on the distribution and abundance of livestock is needed for a many reasons. These include analyses of the social and economic aspects of the livestock sector; the environmental impacts of livestock such as the production and management of waste, greenhouse gas emissions and livestock-related land-use change; and large-scale public health and epidemiological investigations. The Gridded Livestock of the World (GLW) database, produced in 2007, provided modelled livestock densities of the world, adjusted to match official (FAOSTAT) national estimates for the reference year 2005, at a spatial resolution of 3 minutes of arc (about 5×5 km at the equator). Recent methodological improvements have significantly enhanced these distributions: more up-to date and detailed sub-national livestock statistics have been collected; a new, higher resolution set of predictor variables is used; and the analytical procedure has been revised and extended to include a more systematic assessment of model accuracy and the representation of uncertainties associated with the predictions. This paper describes the current approach in detail and presents new global distribution maps at 1 km resolution for cattle, pigs and chickens, and a partial distribution map for ducks. These digital layers are made publically available via the Livestock Geo-Wiki (http://www.livestock.geo-wiki.org), as will be the maps of other livestock types as they are produced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Greenhouse gas emissions and energy use associated with production of individual self-selected US diets

            Abstract Human food systems are a key contributor to climate change and other environmental concerns. While the environmental impacts of diets have been evaluated at the aggregate level, few studies, and none for the US, have focused on individual self-selected diets. Such work is essential for estimating a distribution of impacts, which, in turn, is key to recommending policies for driving consumer demand towards lower environmental impacts. To estimate the impact of US dietary choices on greenhouse gas emissions (GHGE) and energy demand, we built a food impacts database from an exhaustive review of food life cycle assessment (LCA) studies and linked it to over 6000 as-consumed foods and dishes from 1 day dietary recall data on adults (N = 16 800) in the nationally representative 2005–2010 National Health and Nutrition Examination Survey. Food production impacts of US self-selected diets averaged 4.7 kg CO2 eq. person−1 day−1 (95% CI: 4.6–4.8) and 25.2 MJ non-renewable energy demand person−1 day−1 (95% CI: 24.6–25.8). As has been observed previously, meats and dairy contribute the most to GHGE and energy demand of US diets; however, beverages also emerge in this study as a notable contributor. Although linking impacts to diets required the use of many substitutions for foods with no available LCA studies, such proxy substitutions accounted for only 3% of diet-level GHGE. Variability across LCA studies introduced a ±19% range on the mean diet GHGE, but much of this variability is expected to be due to differences in food production locations and practices that can not currently be traced to individual dietary choices. When ranked by GHGE, diets from the top quintile accounted for 7.9 times the GHGE as those from the bottom quintile of diets. Our analyses highlight the importance of utilizing individual dietary behaviors rather than just population means when considering diet shift scenarios.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A thematic review of life cycle assessment (LCA) applied to pig production

                Bookmark

                Author and article information

                Contributors
                Journal
                Land
                Land
                MDPI AG
                2073-445X
                June 2022
                May 31 2022
                : 11
                : 6
                : 827
                Article
                10.3390/land11060827
                a814c0c9-0821-4157-8d50-a05a929e0fc9
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article