25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Uric Acid in Kidney Fibrosis: Experimental Evidences for the Causal Relationship

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperuricemia is a common finding in chronic kidney disease due to decreased uric acid clearance. The role of uric acid as a risk factor for chronic kidney disease has been largely debated, and recent studies suggested a role of uric acid in the causation and progression of kidney fibrosis, a final common pathway in chronic kidney disease. Uric acid and xanthine oxidase may contribute to kidney fibrosis mainly by inducing inflammation, endothelial dysfunction, oxidative stress, and activation of the renin-angiotensin system. Besides, hyperuricemia induces alterations in renal hemodynamics via afferent arteriolopathy and contributes to the onset and progression of kidney fibrosis. Xanthine oxidase inhibitors may prevent kidney damage via lowering uric acid and/or inhibiting xanthine oxidase. However, there is still no sufficient evidence from interventional clinical researches supporting the causal relationship between uric acid and kidney fibrosis. The effect and role of xanthine oxidase inhibitors in preventing kidney fibrosis and chronic kidney disease progression must be further explored by performing future large scale clinical trials.

          Related collections

          Most cited references 79

          • Record: found
          • Abstract: found
          • Article: not found

          Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.

          During primate evolution, a major factor in lengthening life-span and decreasing age-specific cancer rates may have been improved protective mechanisms against oxygen radicals. We propose that one of these protective systems is plasma uric acid, the level of which increased markedly during primate evolution as a consequence of a series of mutations. Uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and radicals. We show that, at physiological concentrations, urate reduces the oxo-heme oxidant formed by peroxide reaction with hemoglobin, protects erythrocyte ghosts against lipid peroxidation, and protects erythrocytes from peroxidative damage leading to lysis. Urate is about as effective an antioxidant as ascorbate in these experiments. Urate is much more easily oxidized than deoxynucleosides by singlet oxygen and is destroyed by hydroxyl radicals at a comparable rate. The plasma urate levels in humans (about 300 microM) is considerably higher than the ascorbate level, making it one of the major antioxidants in humans. Previous work on urate reported in the literature supports our experiments and interpretations, although the findings were not discussed in a physiological context.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells.

            Recent experimental and human studies have shown that hyperuricemia is associated with hypertension, systemic inflammation, and cardiovascular disease mediated by endothelial dysfunction and pathologic vascular remodeling. Elevated levels of C-reactive protein (CRP) have emerged as one of the most powerful independent predictors of cardiovascular disease. In addition to being a marker of inflammation, recent evidence suggests that CRP may participate directly in the development of atherosclerotic vascular disease. For investigating whether uric acid (UA)-induced inflammatory reaction and vascular remodeling is related to CRP, the UA-induced expression of CRP in human vascular smooth muscle cells (HVSMC) and human umbilical vein endothelial cells (HUVEC) was examined, as well as the pathogenetic role of CRP in vascular remodeling. It is interesting that HVSMC and HUVEC expressed CRP mRNA and protein constitutively, revealing that vascular cells are another source of CRP production. UA (6 to 12 mg/dl) upregulated CRP mRNA expression in HVSMC and HUVEC with a concomitant increase in CRP release into cell culture media. Inhibition of p38 or extracellular signal-regulated kinase 44/42 significantly suppressed UA-induced CRP expression, implicating these pathways in the response to UA. UA stimulated HVSMC proliferation whereas UA inhibited serum-induced proliferation of HUVEC assessed by 3H-thymidine uptake and cell counting, which was attenuated by co-incubation with probenecid, the organic anion transport inhibitor, suggesting that entry of UA into cells is responsible for CRP expression. UA also increased HVSMC migration and inhibited HUVEC migration. In HUVEC, UA reduced nitric oxide (NO) release. Treatment of vascular cells with anti-CRP antibody revealed a reversal of the effect of UA on cell proliferation and migration in HVSMC and NO release in HUVEC, which suggests that CRP expression may be responsible for UA-induced vascular remodeling. This is the first study to show that soluble UA, at physiologic concentrations, has profound effects on human vascular cells. The observation that UA alters the proliferation/migration and NO release of human vascular cells, mediated by the expression of CRP, calls for careful reconsideration of the role of UA in hypertension and vascular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for uric acid in the progression of renal disease.

              Hyperuricemia is associated with renal disease, but it is usually considered a marker of renal dysfunction rather than a risk factor for progression. Recent studies have reported that mild hyperuricemia in normal rats induced by the uricase inhibitor, oxonic acid (OA), results in hypertension, intrarenal vascular disease, and renal injury. This led to the hypothesis that uric acid may contribute to progressive renal disease. To examine the effect of hyperuricemia on renal disease progression, rats were fed 2% OA for 6 wk after 5/6 remnant kidney (RK) surgery with or without the xanthine oxidase inhibitor, allopurinol, or the uricosuric agent, benziodarone. Renal function and histologic studies were performed at 6 wk. Given observations that uric acid induces vascular disease, the effect of uric acid on vascular smooth muscle cells in culture was also examined. RK rats developed transient hyperuricemia (2.7 mg/dl at week 2), but then levels returned to baseline by week 6 (1.4 mg/dl). In contrast, RK+OA rats developed higher and more persistent hyperuricemia (6 wk, 3.2 mg/dl). Hyperuricemic rats demonstrated higher BP, greater proteinuria, and higher serum creatinine than RK rats. Hyperuricemic RK rats had more renal hypertrophy and greater glomerulosclerosis (24.2 +/- 2.5 versus 17.5 +/- 3.4%; P < 0.05) and interstitial fibrosis (1.89 +/- 0.45 versus 1.52 +/- 0.47; P < 0.05). Hyperuricemic rats developed vascular disease consisting of thickening of the preglomerular arteries with smooth muscle cell proliferation; these changes were significantly more severe than a historical RK group with similar BP. Allopurinol significantly reduced uric acid levels and blocked the renal functional and histologic changes. Benziodarone reduced uric acid levels less effectively and only partially improved BP and renal function, with minimal effect on the vascular changes. To better understand the mechanism for the vascular disease, the expression of COX-2 and renin were examined. Hyperuricemic rats showed increased renal renin and COX-2 expression, the latter especially in preglomerular arterial vessels. In in vitro studies, cultured vascular smooth muscle cells incubated with uric acid also generated COX-2 with time-dependent proliferation, which was prevented by either a COX-2 or TXA-2 receptor inhibitor. Hyperuricemia accelerates renal progression in the RK model via a mechanism linked to high systemic BP and COX-2-mediated, thromboxane-induced vascular disease. These studies provide direct evidence that uric acid may be a true mediator of renal disease and progression.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                5 May 2014
                : 2014
                Affiliations
                1Division of Nephrology, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 626-770, Republic of Korea
                2Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Republic of Korea
                3Medical Research Institute, Pusan National University Hospital, Busan 602-739, Republic of Korea
                Author notes

                Academic Editor: Keizo Kanasaki

                Article
                10.1155/2014/638732
                4026934
                Copyright © 2014 Il Young Kim et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Comments

                Comment on this article