21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floquet analysis of pulsed Dirac systems: A way to simulate rippled graphene

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The low energy continuum limit of graphene is effectively known to be modeled using Dirac equation in (2+1) dimensions. We consider the possibility of using modulated high frequency periodic driving of a two-dimension system (optical lattice) to simulate properties of rippled graphene. We suggest that the Dirac Hamiltonian in a curved background space can also be effectively simulated by a suitable driving scheme in optical lattice. The time dependent system yields, in the approximate limit of high frequency pulsing, an effective time independent Hamiltonian that governs the time evolution, except for an initial and a final kick. We use a specific form of 4-phase pulsed forcing with suitably tuned choice of modulating operators to mimic the effects of curvature. The extent of curvature is found to be directly related to \(\omega^{-1}\) the time period of the driving field at the leading order. We apply the method to engineer the effects of curved background space. We find that the imprint of curvilinear geometry modifies the electronic properties, such as LDOS, significantly. We suggest that this method shall be useful in studying the response of various properties of such systems to non-trivial geometry without requiring any actual physical deformations.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Experimental realisation of the topological Haldane model

          The Haldane model on the honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band-structure, rather than being caused by an external magnetic field. Although an implementation in a material was considered unlikely, it has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors. Here we report on the experimental realisation of the Haldane model and the characterisation of its topological band-structure, using ultracold fermionic atoms in a periodically modulated optical honeycomb lattice. The model is based on breaking time-reversal symmetry as well as inversion symmetry. The former is achieved through the introduction of complex next-nearest-neighbour tunnelling terms, which we induce through circular modulation of the lattice position. For the latter, we create an energy offset between neighbouring sites. Breaking either of these symmetries opens a gap in the band-structure, which is probed using momentum-resolved interband transitions. We explore the resulting Berry-curvatures of the lowest band by applying a constant force to the atoms and find orthogonal drifts analogous to a Hall current. The competition between both broken symmetries gives rise to a transition between topologically distinct regimes. By identifying the vanishing gap at a single Dirac point, we map out this transition line experimentally and compare it to calculations using Floquet theory without free parameters. We verify that our approach, which allows for dynamically tuning topological properties, is suitable even for interacting fermionic systems. Furthermore, we propose a direct extension to realise spin-dependent topological Hamiltonians.
            Bookmark

            Author and article information

            Journal
            2014-10-27
            2015-03-25
            Article
            10.1140/epjb/e2015-60356-2
            1411.1423
            a85f94c8-80b9-403c-9b43-f9e627baa9c8

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            16 pages, 1 figure. Suggestions and comments are welcome
            cond-mat.mes-hall quant-ph

            Quantum physics & Field theory,Nanophysics
            Quantum physics & Field theory, Nanophysics

            Comments

            Comment on this article