3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Complement C4 associations with altered microbial biomarkers exemplify gene-by-environment interactions in schizophrenia

      , , , , ,
      Schizophrenia Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia

          The variable results of positive-negative research with schizophrenics underscore the importance of well-characterized, standardized measurement techniques. We report on the development and initial standardization of the Positive and Negative Syndrome Scale (PANSS) for typological and dimensional assessment. Based on two established psychiatric rating systems, the 30-item PANSS was conceived as an operationalized, drug-sensitive instrument that provides balanced representation of positive and negative symptoms and gauges their relationship to one another and to global psychopathology. It thus constitutes four scales measuring positive and negative syndromes, their differential, and general severity of illness. Study of 101 schizophrenics found the four scales to be normally distributed and supported their reliability and stability. Positive and negative scores were inversely correlated once their common association with general psychopathology was extracted, suggesting that they represent mutually exclusive constructs. Review of five studies involving the PANSS provided evidence of its criterion-related validity with antecedent, genealogical, and concurrent measures, its predictive validity, its drug sensitivity, and its utility for both typological and dimensional assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host microbiota constantly control maturation and function of microglia in the CNS.

            As the tissue macrophages of the CNS, microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. We observed substantial contributions of the host microbiota to microglia homeostasis, as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype, leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulated microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings suggest that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be rectified to some extent by complex microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

              Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Schizophrenia Research
                Schizophrenia Research
                Elsevier BV
                09209964
                August 2021
                August 2021
                : 234
                : 87-93
                Article
                10.1016/j.schres.2021.02.001
                a8c27f96-e241-4fc7-84c8-0adee65268c1
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article