60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          A single domestication for maize shown by multilocus microsatellite genotyping.

          There exists extraordinary morphological and genetic diversity among the maize landraces that have been developed by pre-Columbian cultivators. To explain this high level of diversity in maize, several authors have proposed that maize landraces were the products of multiple independent domestications from their wild relative (teosinte). We present phylogenetic analyses based on 264 individual plants, each genotyped at 99 microsatellites, that challenge the multiple-origins hypothesis. Instead, our results indicate that all maize arose from a single domestication in southern Mexico about 9,000 years ago. Our analyses also indicate that the oldest surviving maize types are those of the Mexican highlands with maize spreading from this region over the Americas along two major paths. Our phylogenetic work is consistent with a model based on the archaeological record suggesting that maize diversified in the highlands of Mexico before spreading to the lowlands. We also found only modest evidence for postdomestication gene flow from teosinte into maize.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L.

            The diversity of bacteria and archaea associating on the surface and interior of maize roots (Zea mays L.) was investigated. A bacterial 16S rDNA primer was designed to amplify bacterial sequences directly from maize roots by PCR to the exclusion of eukaryotic and chloroplast DNA. The mitochondrial sequence from maize was easily separated from the PCR-amplified bacterial sequences by size fractionation. The culturable component of the bacterial community was also assessed, reflecting a community composition different from that of the clone library. The phylogenetic overlap between organisms obtained by cultivation and those identified by direct PCR amplification of 16S rDNA was 48%. Only 4 bacterial divisions were found in the culture collection, which represented 27 phylotypes, whereas 6 divisions were identified in the clonal analysis, comprising 74 phylotypes, including a member of the OP10 candidate division originally described as a novel division level lineage in a Yellowstone hot spring. The predominant group in the culture collection was the actinobacteria and within the clone library, the a-proteobacteria predominated. The population of maize-associated proteobacteria resembled the proteobacterial population of a typical soil community within which resided a subset of specific plant-associated bacteria, such as Rhizobium- and Herbaspirillum-related phylotypes. The representation of phylotypes within other divisions (OP10 and Acidobacterium) suggests that maize roots support a distinct bacterial community. The diversity within the archaeal domain was low. Of the 50 clones screened, 6 unique sequence types were identified, and 5 of these were highly related to each other (sharing 98% sequence identity). The archaeal sequences clustered with good bootstrap support near Marine group I (crenarchaea) and with Marine group II (euryarchaea) uncultured archaea. The results suggest that maize supports a diverse root-associated microbial community composed of species that for the first time have been described as inhabitants of a plant-root environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Symbioses of grasses with seedborne fungal endophytes.

              Grasses (family Poaceae) and fungi of the family Clavicipitaceae have a long history of symbiosis ranging in a continuum from mutualisms to antagonisms. This continuum is particularly evident among symbioses involving the fungal genus Epichloe (asexual forms = Neotyphodium spp.). In the more mutualistic symbiota, the epichloe endophytes are vertically transmitted via host seeds, and in the more antagonistic symbiota they spread contagiously and suppress host seed set. The endophytes gain shelter, nutrition, and dissemination via host propagules, and can contribute an array of host fitness enhancements including protection against insect and vertebrate herbivores and root nematodes, enhancements of drought tolerance and nutrient status, and improved growth particularly of the root. In some systems, such as the tall fescue N. coenophialum symbioses, the plant may depend on the endophyte under many natural conditions. Recent advances in endophyte molecular biology promise to shed light on the mechanisms of the symbioses and host benefits.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                3 June 2011
                : 6
                : 6
                : e20396
                Affiliations
                [1]Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
                Natural History Museum of Denmark, Denmark
                Author notes

                Designed the experiments: DJM. Carried out all sampling, lab work, and data analysis: DJM. Wrote the manuscript: DJM. Funded the work: MNR. Participated in design and coordination of the study: MNR. Helped write the manuscript: MNR. Read and approved the final manuscript: DJM MNR.

                Article
                PONE-D-11-02506
                10.1371/journal.pone.0020396
                3108599
                21673982
                a908224d-1bc9-4886-b4e7-8b7dd80b7008
                Johnston-Monje and Raizada. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 February 2011
                : 1 May 2011
                Page count
                Pages: 22
                Categories
                Research Article
                Agriculture
                Agroecology
                Agro-Population Ecology
                Agronomic Ecology
                Crops
                Cereals
                Maize
                Crop Management
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Molecular Genetics
                Gene Identification and Analysis
                Sequence Analysis
                Ecology
                Agroecology
                Agro-Population Ecology
                Agronomic Ecology
                Biodiversity
                Evolutionary Ecology
                Microbial Ecology
                Plant Ecology
                Evolutionary Biology
                Organismal Evolution
                Plant Evolution
                Evolutionary Ecology
                Microbiology
                Microbial Ecology
                Plant Microbiology
                Model Organisms
                Plant and Algal Models
                Maize
                Plant Science
                Plants
                Seedlings
                Seeds
                Plant Evolution
                Plant Phylogenetics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article