12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in colloidal synthesis enabled the precise control of the size, shape and composition of catalytic metal nanoparticles, enabling their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here, we report the design of a high-temperature-stable model catalytic system that consists of a Pt metal core coated with a mesoporous silica shell (Pt@mSiO(2)). Inorganic silica shells encaged the Pt cores up to 750 degrees C in air and the mesopores providing direct access to the Pt core made the Pt@mSiO(2) nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt@mSiO(2) nanoparticles enabled high-temperature CO oxidation studies, including ignition behaviour, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt@mSiO(2) nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept used in the Pt@mSiO(2) core-shell catalyst can be extended to other metal/metal oxide compositions.

          Related collections

          Author and article information

          Journal
          Nat Mater
          Nature materials
          Springer Science and Business Media LLC
          1476-1122
          1476-1122
          Feb 2009
          : 8
          : 2
          Affiliations
          [1 ] Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
          Article
          nmat2329
          10.1038/nmat2329
          19029893
          a908801b-a1d5-479a-8de1-46b36f9bfade
          History

          Comments

          Comment on this article