0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Varietal Aromas of Sauvignon Blanc: Impact of Oxidation and Antioxidants Used in Winemaking

      , ,
      Fermentation
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Key varietal characteristics of Sauvignon Blanc, including the descriptors of ‘green’ and ‘tropical fruit’, are mostly attributed to methoxypyrazines and volatile thiols, while monoterpenes, higher alcohols, esters, fatty acids, and other volatile compounds also add complexity and fruity notes to the wines. During the winemaking and ageing period, oxidation decreases the concentrations of these compounds and diminishes the flavours derived from this aromatic grape variety. Therefore, antioxidants, such as sulfur dioxide, are commonly utilized in Sauvignon Blanc wine production for better preservation of those beneficial primary aromas. This review focuses on key varietal aromas in Sauvignon Blanc wine and how they are influenced by oxidation, and SO2 alternatives, including ascorbic acid, glutathione, and glutathione-enriched inactivated dry yeasts, that can be used in winemaking as antioxidants.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Biosynthesis of plant-derived flavor compounds.

          Plants have the capacity to synthesize, accumulate and emit volatiles that may act as aroma and flavor molecules due to interactions with human receptors. These low-molecular-weight substances derived from the fatty acid, amino acid and carbohydrate pools constitute a heterogenous group of molecules with saturated and unsaturated, straight-chain, branched-chain and cyclic structures bearing various functional groups (e.g. alcohols, aldehydes, ketones, esters and ethers) and also nitrogen and sulfur. They are commercially important for the food, pharmaceutical, agricultural and chemical industries as flavorants, drugs, pesticides and industrial feedstocks. Due to the low abundance of the volatiles in their plant sources, many of the natural products had been replaced by their synthetic analogues by the end of the last century. However, the foreseeable shortage of the crude oil that is the source for many of the artificial flavors and fragrances has prompted recent interest in understanding the formation of these compounds and engineering their biosynthesis. Although many of the volatile constituents of flavors and aromas have been identified, many of the enzymes and genes involved in their biosynthesis are still not known. However, modification of flavor by genetic engineering is dependent on the knowledge and availability of genes that encode enzymes of key reactions that influence or divert the biosynthetic pathways of plant-derived volatiles. Major progress has resulted from the use of molecular and biochemical techniques, and a large number of genes encoding enzymes of volatile biosynthesis have recently been reported.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism.

              Green leaf volatiles (GLVs) are C(6) aldehydes, alcohols, and their esters formed through the hydroperoxide lyase pathway of oxylipin metabolism. Plants start to form GLVs after disruption of their tissues and after suffering biotic or abiotic stresses. GLV formation is thought to be regulated at the step of lipid-hydrolysis, which provides free fatty acids to the pathway. Recently, studies dissecting the physiological significance of GLVs in plants have emerged, and it has been postulated that GLVs are important molecules both for signaling within and between plants and for allowing plants and other organisms surrounding them to recognize or compete with each other.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                FERMC4
                Fermentation
                Fermentation
                MDPI AG
                2311-5637
                December 2022
                November 28 2022
                : 8
                : 12
                : 686
                Article
                10.3390/fermentation8120686
                a9274969-4ebb-4f31-9196-5100e2234b5c
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article