Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM).

      TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The low nutritive value of maize endosperm protein is genetically corrected in quality protein maize (QPM), which contains the opaque 2 gene along with numerous modifiers for kernel hardness. We report here a two generation marker-based backcross breeding program for incorporation of the opaque 2 gene along with phenotypic selection for kernel modification in the background of an early maturing normal maize inbred line, V25. Using the flanking marker distances from opaque 2 gene in the cross V 25 xCML 176, optimum population size for the BC(2) generation was computed in such a way that at least one double recombinant could be obtained. Whole genome background selection in the BC(2) generation identified three plants with 93 to 96% recurrent parent genome content. The three BC(2)F(2) families derived from marker identified BC(2) individuals were subjected to foreground selection and phenotypic selection for kernel modification. The tryptophan concentration in endosperm protein was significantly enhanced in all the three classes of kernel modification viz., less than 25%, 25--50% and more than 50% opaqueness. BC(2)F(3) lines developed from the hard endosperm kernels were evaluated for desirable agronomic and biochemical traits in replicated trials and the best line was chosen to represent the QPM version of V25, with tryptophan concentration of 0.85% in protein. The integrated breeding strategy reported here can be applied to reduce genetic drag as well as the time involved in a conventional line conversion program, and would prove valuable in rapid development of specialty corn germ plasm.

          Related collections

          Author and article information

          Journal
          16034586
          10.1007/s00122-005-0011-6

          Comments

          Comment on this article

          scite_