9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mesoporous Silica Coated Single-Walled Carbon Nanotubes as a Multifunctional Light-Responsive Platform for Cancer Combination Therapy

      , , , , , ,
      Advanced Functional Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery.

          We show that large surface areas exist for supramolecular chemistry on single-walled carbon nanotubes (SWNTs) prefunctionalized noncovalently or covalently by common surfactant or acid-oxidation routes. Water-soluble SWNTs with poly(ethylene glycol) (PEG) functionalization via these routes allow for surprisingly high degrees of pi-stacking of aromatic molecules, including a cancer drug (doxorubicin) with ultrahigh loading capacity, a widely used fluorescence molecule (fluorescein), and combinations of molecules. Binding of molecules to nanotubes and their release can be controlled by varying the pH. The strength of pi-stacking of aromatic molecules is dependent on nanotube diameter, leading to a method for controlling the release rate of molecules from SWNTs by using nanotube materials with suitable diameter. This work introduces the concept of "functionalization partitioning" of SWNTs, i.e., imparting multiple chemical species, such as PEG, drugs, and fluorescent tags, with different functionalities onto the surface of the same nanotube. Such chemical partitioning should open up new opportunities in chemical, biological, and medical applications of novel nanomaterials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug delivery with carbon nanotubes for in vivo cancer treatment.

            Chemically functionalized single-walled carbon nanotubes (SWNT) have shown promise in tumor-targeted accumulation in mice and exhibit biocompatibility, excretion, and little toxicity. Here, we show in vivo SWNT drug delivery for tumor suppression in mice. We conjugate paclitaxel (PTX), a widely used cancer chemotherapy drug, to branched polyethylene glycol chains on SWNTs via a cleavable ester bond to obtain a water-soluble SWNT-PTX conjugate. SWNT-PTX affords higher efficacy in suppressing tumor growth than clinical Taxol in a murine 4T1 breast cancer model, owing to prolonged blood circulation and 10-fold higher tumor PTX uptake by SWNT delivery likely through enhanced permeability and retention. Drug molecules carried into the reticuloendothelial system are released from SWNTs and excreted via biliary pathway without causing obvious toxic effects to normal organs. Thus, nanotube drug delivery is promising for high treatment efficacy and minimum side effects for future cancer therapy with low drug doses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles.

              The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley-Blackwell
                1616301X
                January 2015
                January 2015
                : 25
                : 3
                : 384-392
                Article
                10.1002/adfm.201403079
                a975a4f2-6884-4123-884a-49ffbb39b9a6
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article